Patents by Inventor Kota Otoshi

Kota Otoshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140140004
    Abstract: A power module includes a power device and a heat sink. The heat sink includes a refrigerant passage in which a cooling medium flows and a corrugated fin body arranged in the refrigerant passage. The refrigerant passage is defined by a surface and a backside, and the power device is disposed in proximity to the surface. The corrugated fin body has crests and troughs that extend in the flow direction of the cooling medium and side walls each of which connects the corresponding one of the crests with the adjacent one of the troughs. Each adjacent pair of the side walls and the corresponding one of the crests or the corresponding one of the troughs arranged between the adjacent side walls form a fin. A guide that extends in the flow direction of the cooling medium and operates to stir the cooling medium is arranged in each of the fins.
    Type: Application
    Filed: February 27, 2013
    Publication date: May 22, 2014
    Applicants: SHOWA DENKO K.K., KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Hidehito KUBO, Masahiko Kimbara, Keiji Toh, Kota Otoshi, Eiji Kono, Katsufumi Tanaka, Nobuhiro Wakabayashi, Shintaro Nakagawa, Yuichi Furukawa, Shinobu Yamauchi
  • Patent number: 8411438
    Abstract: A heat sink (1) for power module is capable of mounting a power device (101) on at least a surface of the heat sink. The heat sink includes a refrigerant passage (1d) in which cooling medium that dissipates heat generated by the power device (101) flows and a corrugated fin body (1a) arranged in the refrigerant passage (1d). The corrugated fin body (1a) has crests (21b) and troughs (21c) that extend in the flow direction of the cooling medium, and side walls (21a) each of which connects the corresponding one of the crests (21b) with the adjacent one of the troughs (21c). Each adjacent pair of the side walls (21a) and the corresponding one of the crests (21b) or the corresponding one of the troughs (21c) arranged between the adjacent side walls (21a) form a fin (21). Each of the side walls (21a) has a louver (31) that operates to, at least, rotate the cooling medium flowing in the associated fin (21). The heat sink (1) thus has a further improved heat dissipating performance.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: April 2, 2013
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, Showa Denko K.K.
    Inventors: Hidehito Kubo, Masahiko Kimbara, Keiji Toh, Kota Otoshi, Eiji Kono, Katsufumi Tanaka, Nobuhiro Wakabayashi, Shintaro Nakagawa, Yuichi Furukawa, Shinobu Yamauchi
  • Patent number: 8387685
    Abstract: A heat sink for a power module able to realize a further improvement of heat radiating performance and a further improvement of a mounting property is provided. The heat sink 1 for a power module has a laminating body 20, a first side plate 30 and a second side plate 40. The laminating body 20 has plural flow path plates 21 formed in a plate shape in which plural grooves 23 parallel to each other are concavely arranged on a flat joining face 22. Each groove 23 is set to a parallel flow path 50 parallel to a front face side by laminating each flow path plate 21 by each joining face 22. A portion other than each groove 23 of each joining face 22 forms a heat transfer path 70a to each parallel flow path 50 of a laminating direction. A flow-in path 30a and a flow-out path 40a are formed in the first and second side plates 30, 40. The flow-in path 30a and the flow-out path 40a are joined to side faces 26a, 26b of the laminating body 20, and are communicated with each parallel flow path 50.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: March 5, 2013
    Assignees: Kabushiki Kaisha Toshiba Jidoshokki, Showa Denko K.K.
    Inventors: Masahiko Kimbara, Keiji Toh, Hidehito Kubo, Katsufumi Tanaka, Kota Otoshi, Eiji Kono, Nobuhiro Wakabayashi, Shintaro Nakagawa, Yuichi Furukawa, Shinobu Yamauchi
  • Patent number: 8198539
    Abstract: A heat radiator 1 includes an insulating substrate 3 whose first side serves as a heat-generating-element-mounting side, and a heat sink 5 fixed to a second side of the insulating substrate 3. A metal layer 7 is formed on the second side of the insulating substrate 3 opposite the heat-generating-element-mounting side. A stress relaxation member 4 formed of a high-thermal-conduction material intervenes between the metal layer 7 of the insulating substrate 3 and the heat sink 5 and includes a plate-like body 10 and a plurality of projections 11 formed at intervals on one side of the plate-like body 10. The end faces of the projections 11 of the stress relaxation member 4 are brazed to the metal layer 7, whereas the side of the plate-like body 10 on which the projections 11 are not formed is brazed to the heat sink 5. This heat radiator 1 is low in material cost and exhibits excellent heat radiation performance.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: June 12, 2012
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, Showa Denko K.K.
    Inventors: Kota Otoshi, Eiji Kono, Keiji Toh, Katsufumi Tanaka, Yuichi Furukawa, Shinobu Yamauchi, Ryoichi Hoshino, Nobuhiro Wakabayashi, Shintaro Nakagawa
  • Patent number: 7923833
    Abstract: A semiconductor module 10 includes a ceramic substrate having a front surface on which a semiconductor element 12 is mounted and a rear surface on the opposite side of the front surface, a front metal plate 15 joined to the front surface, a rear metal plate 16 joined to the rear surface, and a heat sink 13 joined to the rear metal plate 16. The rear metal plate 16 includes a joint surface 16b that faces the heat sink 13. The joint surface 16b includes a joint area and a non-joint area. The non-joint area includes recesses 18 which extend in the thickness direction of the rear metal plate 16. The joint area of the rear metal plate 16 is in a range from 65% to 85% of the total area of the joint surface 16b on the rear metal plate 16. As a result, excellent heat dissipating performance can be achieved while occurrence of distortion and cracking due to thermal stress is prevented.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: April 12, 2011
    Assignees: Showa Denko K.K., Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Yuichi Furukawa, Shinobu Yamauchi, Nobuhiro Wakabayashi, Shintaro Nakagawa, Keiji Toh, Eiji Kono, Kota Otoshi, Katsufumi Tanaka
  • Publication number: 20090314474
    Abstract: A heat sink for a power module able to realize a further improvement of heat radiating performance and a further improvement of a mounting property is provided. The heat sink 1 for a power module has a laminating body 20, a first side plate 30 and a second side plate 40. The laminating body 20 has plural flow path plates 21 formed in a plate shape in which plural grooves 23 parallel to each other are concavely arranged on a flat joining face 22. Each groove 23 is set to a parallel flow path 50 parallel to a front face side by laminating each flow path plate 21 by each joining face 22. A portion other than each groove 23 of each joining face 22 forms a heat transfer path 70a to each parallel flow path 50 of a laminating direction. A flow-in path 30a and a flow-out path 40a are formed in the first and second side plates 30, 40. The flow-in path 30a and the flow-out path 40a are joined to side faces 26a, 26b of the laminating body 20, and are communicated with each parallel flow path 50.
    Type: Application
    Filed: April 19, 2006
    Publication date: December 24, 2009
    Applicants: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, SHOWA DENKO K.K.
    Inventors: Masahiko Kimbara, Keiji Toh, Hidehito Kubo, Katsufumi Tanaka, Kota Otoshi, Eiji Kono, Nobuhiro Wakabayashi, Shintaro Nakagawa, Yuichi Furukawa, Shinobu Yamauchi
  • Publication number: 20090302458
    Abstract: A heat sink (1) for power module is capable of mounting a power device (101) on at least a surface of the heat sink. The heat sink includes a refrigerant passage (1d) in which cooling medium that dissipates heat generated by the power device (101) flows and a corrugated fin body (1a) arranged in the refrigerant passage (1d). The corrugated fin body (1a) has crests (21b) and troughs (21c) that extend in the flow direction of the cooling medium, and side walls (21a) each of which connects the corresponding one of the crests (21b) with the adjacent one of the troughs (21c). Each adjacent pair of the side walls (21a) and the corresponding one of the crests (21b) or the corresponding one of the troughs (21c) arranged between the adjacent side walls (21a) form a fin (21). Each of the side walls (21a) has a louver (31) that operates to, at least, rotate the cooling medium flowing in the associated fin (21). The heat sink (1) thus has a further improved heat dissipating performance.
    Type: Application
    Filed: June 27, 2006
    Publication date: December 10, 2009
    Inventors: Hidehito Kubo, Masahiko Kimbara, Keiji Toh, Kota Otoshi, Eiji Kono, Katsufumi Tanaka, Nobuhiro Wakabayashi, Shintaro Nakagawa, Yuichi Furukawa, Shinobu Yamauchi
  • Publication number: 20090200065
    Abstract: A heat radiator 1 includes an insulating substrate 3 whose first side serves as a heat-generating-element-mounting side, and a heat sink 5 fixed to a second side of the insulating substrate 3. A metal layer 7 is formed on the second side of the insulating substrate 3 opposite the heat-generating-element-mounting side. A stress relaxation member 4 formed of a high-thermal-conduction material intervenes between the metal layer 7 of the insulating substrate 3 and the heat sink 5 and includes a plate-like body 10 and a plurality of projections 11 formed at intervals on one side of the plate-like body 10. The end faces of the projections 11 of the stress relaxation member 4 are brazed to the metal layer 7, whereas the side of the plate-like body 10 on which the projections 11 are not formed is brazed to the heat sink 5. This heat radiator 1 is low in material cost and exhibits excellent heat radiation performance.
    Type: Application
    Filed: July 5, 2006
    Publication date: August 13, 2009
    Applicants: Kabushiki Kaisha Toyota Jidoshokki, Showa Denko K.K.
    Inventors: Kota Otoshi, Eiji Kono, Keiji Toh, Katsufumi Tanaka, Yuichi Furukawa, Shinobu Yamauchi, Ryoichi Hoshino, Nobuhiro Wakabayashi, Shintaro Nakagawa
  • Publication number: 20090174063
    Abstract: A semiconductor module 10 includes a ceramic substrate having a front surface on which a semiconductor element 12 is mounted and a rear surface on the opposite side of the front surface, a front metal plate 15 joined to the front surface, a rear metal plate 16 joined to the rear surface, and a heat sink 13 joined to the rear metal plate 16. The rear metal plate 16 includes a joint surface 16b that faces the heat sink 13. The joint surface 16b includes a joint area and a non-joint area. The non-joint area includes recesses 18 which extend in the thickness direction of the rear metal plate 16. The joint area of the rear metal plate 16 is in a range from 65% to 85% of the total area of the joint surface 16b on the rear metal plate 16. As a result, excellent heat dissipating performance can be achieved while occurrence of distortion and cracking due to thermal stress is prevented.
    Type: Application
    Filed: December 11, 2006
    Publication date: July 9, 2009
    Inventors: Yuichi Furukawa, Shinobu Yamauchi, Nobuhiro Wakabayashi, Shintaro Nakagawa, Keiji Toh, Eiji Kono, Kota Otoshi, Katsufumi Tanaka
  • Publication number: 20090139704
    Abstract: A heat radiator 1 includes an insulating substrate 3 whose first side serves as a heat-generating-element-mounting side, and a heat sink 5 fixed to a second side of the insulating substrate 3. A metal layer 7 is formed on a side of the insulating substrate 3 opposite the heat-generating-element-mounting side. A stress relaxation member 4 intervenes between the metal layer 7 of the insulating substrate 3 and the heat sink 5. The stress relaxation member 4 is formed of an aluminum plate 10 having a plurality of through holes 9 formed therein, and the through holes 9 serve as stress-absorbing spaces. The stress relaxation member 4 is brazed to the metal layer 7 of the insulating substrate 3 and to the heat sink 5. This heat radiator 1 is low in material cost and exhibits excellent heat radiation performance.
    Type: Application
    Filed: April 6, 2006
    Publication date: June 4, 2009
    Applicants: Kabushiki Kaisha Toyota Jidoshokki, Showa Denko K.K.
    Inventors: Kota Otoshi, Eiji Kono, Hidehito Kubo, Masahiko Kimbara, Yuichi Furukawa, Shinobu Yamauchi, Ryoichi Hoshino, Nobuhiro Wakabayashi, Shintaro Nakagawa
  • Patent number: 7358463
    Abstract: A switching power supply includes a sensor for detecting that the output level of the switching power supply has exceeded a rated output level, and a memory that stores data for estimating temperature change of a heat-producing component during a period in which the output level is higher than the rated output level. The data is differentiation data of a curve that represents temperature change characteristics of the heat-producing component. An estimated temperature of the heat-producing component is computed based on the time elapsed from when the output level of the switching power supply exceeds the rated output level and the differentiation data. When the estimated temperature of the heat-producing component reaches an upper threshold temperature, a switching element is deactivated.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: April 15, 2008
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Takafumi Mizuno, Kota Otoshi
  • Publication number: 20070252635
    Abstract: A driver for a switching device has a plurality of driver circuits for driving the switching device and a control circuit. The control circuit selectively operates the driver circuits in response to a plurality of predetermined drive modes. Alternatively, a driver for a switching device has a driver circuit and a control circuit. The driver circuit is connected to a plurality of power sources. Each of the power sources has a different voltage. The control circuit selects one of the power sources for operating the driver circuit in response to a plurality of predetermined drive modes.
    Type: Application
    Filed: July 5, 2007
    Publication date: November 1, 2007
    Inventors: Kota Otoshi, Sadanori Suzuki
  • Patent number: 7276954
    Abstract: A driver for a switching device has a plurality of driver circuits for driving the switching device and a control circuit. The control circuit selectively operates the driver circuits in response to a plurality of predetermined drive modes. Alternatively, a driver for a switching device has a driver circuit and a control circuit. The driver circuit is connected to a plurality of power sources. Each of the power sources has a different voltage. The control circuit selects one of the power sources for operating the driver circuit in response to a plurality of predetermined drive modes.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: October 2, 2007
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Kota Otoshi, Sadanori Suzuki
  • Publication number: 20070045286
    Abstract: A switching power supply includes a sensor for detecting that the output level of the switching power supply has exceeded a rated output level, and a memory that stores data for estimating temperature change of a heat-producing component during a period in which the output level is higher than the rated output level. The data is differentiation data of a curve that represents temperature change characteristics of the heat-producing component. An estimated temperature of the heat-producing component is computed based on the time elapsed from when the output level of the switching power supply exceeds the rated output level and the differentiation data. When the estimated temperature of the heat-producing component reaches an upper threshold temperature, a switching element is deactivated.
    Type: Application
    Filed: August 12, 2005
    Publication date: March 1, 2007
    Inventors: Takafumi Mizuno, Kota Otoshi
  • Publication number: 20040036511
    Abstract: A driver for a switching device has a plurality of driver circuits for driving the switching device and a control circuit. The control circuit selectively operates the driver circuits in response to a plurality of predetermined drive modes. Alternatively, a driver for a switching device has a driver circuit and a control circuit. The driver circuit is connected to a plurality of power sources. Each of the power sources has a different voltage. The control circuit selects one of the power sources for operating the driver circuit in response to a plurality of predetermined drive modes.
    Type: Application
    Filed: June 25, 2003
    Publication date: February 26, 2004
    Inventors: Kota Otoshi, Sadanori Suzuki
  • Patent number: 6166932
    Abstract: A DC-to-AC converting circuit generates an alternating current by alternately switching a set of switching elements. The alternating current is supplied to a load Lo via an output filtering circuit. If a current detection resistor R1 in the DC-to-AC converting circuit detects an output current that exceeds a reference voltage Vref corresponding to an over-current set value, certain switching elements are turned off to disconnect the DC-to-AC converting circuit from the power source. However, the DC-to-AC converting circuit continues to generate an alternating current from energy stored in one or more inductors that are coupled to the DC-to-AC converting circuit. Preferably, a closing circuit is formed from a diode, a switching element, the load Lo and the inductors. Thus, even if the DC-to-AC converting circuit is disconnected from its power source, an alternating current continuously flows to the load Lo.
    Type: Grant
    Filed: July 20, 1999
    Date of Patent: December 26, 2000
    Assignee: Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
    Inventor: Kota Otoshi