Patents by Inventor Kouji Ikeda

Kouji Ikeda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190360887
    Abstract: A fluid controller is provided having a flow path through which a fluid can flow, a closed space separated from the flow path by an isolation member, and a leak port capable of communicating the closed space with an external part. An anomaly detection device for detecting an anomalty has a pressure sensor detachably fixed to the leak port, a pressure sensor for detecting the pressure in the closed space, a processing module for executing a predetermined information processing, and an detachable mechanism for blocking the leak port from the external part in the state of being fixed. The processing module determines an anomaly of the fluid controller by comparing a detection value detected by the pressure sensor to a predetermined threshold, and transmits a discrimination result of the anomaly of the fluid controller to a server.
    Type: Application
    Filed: February 6, 2018
    Publication date: November 28, 2019
    Applicant: Fujikin Incorporated
    Inventors: Akihiro Harada, Kouji Nishino, Ryousuke Doi, Kouji Kawada, Katsuyuki Sugita, Shinichi Ikeda, Michio Yamaji, Tsutomu Shinohara, Ryutaro Tanno, Yuto Kawauchi
  • Patent number: 10464285
    Abstract: A laminate includes a first sheet containing first fibers, a second sheet laminated on the first sheet and containing second fibers, and an adhesive disposed between the first sheet and the second sheet. At least a part of the adhesive is disposed in an end portion along the edge side of the laminate so as to form a linear first region, and the first sheet is adhered to the second sheet via the first region. Alternatively, a mass per unit area of the adhesive present in an end portion along an edge side of the laminate is larger than a mass per unit area of the adhesive present in a portion near a central part of the laminate rather than the end portion.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: November 5, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kouji Ikeda, Koji Motomura, Takatoshi Mitsushima
  • Patent number: 10408742
    Abstract: To provide a concentration measurement method with which the concentrations of predetermined chemical components can be measured non-destructively, accurately, and rapidly by a simple means, up to the concentrations in trace amount ranges, as well as a concentration measurement method with which the concentrations of chemical components in a measurement target can be accurately and rapidly measured in real time up to the concentrations in nano-order trace amount ranges, and which is endowed with a versatility that can be realized in a variety of embodiments and modes. In the present invention, a measurement target is irradiated, in a time sharing manner, with light of a first wavelength and light of a second wavelength that have different optical absorption rates with respect to the measurement target. The light of each wavelength, arriving optically via the measurement target as a result of irradiation with the light of each wavelength, is received at a shared light-receiving sensor.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: September 10, 2019
    Assignees: FUJIKIN INCORPORATED, TOHOKU UNIVERSITY
    Inventors: Masaaki Nagase, Kouji Nishino, Nobukazu Ikeda, Michio Yamaji, Shigetoshi Sugawa, Rihito Kuroda
  • Publication number: 20190271636
    Abstract: A concentration measuring device includes a measuring cell having a flow passage and a translucent window, a light source for emitting light to the measuring cell through the window, a reflective member for reflecting light propagating through the measuring cell to the window, a light detector for detecting the light exiting from the window, a calculation part for calculating the concentration of the fluid on the basis of a detection signal from the light detector, and an optical device for guiding the light from the light source to the window and guiding the light from the window to the light detector.
    Type: Application
    Filed: July 25, 2017
    Publication date: September 5, 2019
    Applicants: TOKUSHIMA UNIVERSITY, FUJIKIN INCORPORATED
    Inventors: Yoshihiro DEGUCHI, Takashi FUKAWA, Taiki HATTORI, Masaaki NAGASE, Kazuteru TANAKA, Kouji NISHINO, Nobukazu IKEDA
  • Publication number: 20190255914
    Abstract: A cooling device for a vehicle includes a mechanical fan configured to be driven by a driving force of the engine, an engine cooling heat exchanger disposed forward of the mechanical fan in a front-rear direction of the vehicle, a first heat exchanger and a second heat exchanger that are disposed forward of the engine cooling heat exchanger in the front-rear direction of the vehicle, a first electric fan that includes a first motor and cools the first heat exchanger, and a second electric fan that includes a second motor and cools the second heat exchanger. The first motor and the second motor are disposed forward of the first heat exchanger and the second heat exchanger, respectively, in the front-rear direction of the vehicle such that the first motor and the second motor do not overlap the coupling when viewed in a front direction of the vehicle.
    Type: Application
    Filed: February 1, 2019
    Publication date: August 22, 2019
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION
    Inventors: Tetsuya IKEDA, Kouji NORISADA, Masahiro NOGUCHI, Masataka MINAMIGAWA, Masashi SHIBATA, Junichi SUEMATSU
  • Patent number: 10386861
    Abstract: A pressure type flow control system with flow monitoring includes an inlet, a control valve including a pressure flow control unit connected downstream of the inlet, a thermal flow sensor connected downstream of the control valve, an orifice installed on a fluid passage communicatively connected downstream of the thermal flow sensor, a temperature sensor provided near the fluid passage between the control valve and orifice, a pressure sensor provided for the fluid passage between the control valve and orifice, an outlet communicatively connected to the orifice, and a control unit including a pressure type flow rate arithmetic and control unit receiving a pressure signal from the pressure sensor and a temperature signal from the temperature sensor, and a flow sensor control unit to which a flow rate signal from the thermal flow sensor is input.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: August 20, 2019
    Assignee: Fujikin Incorporated
    Inventors: Kaoru Hirata, Ryousuke Dohi, Kouji Nishino, Nobukazu Ikeda, Katsuyuki Sugita
  • Patent number: 10386863
    Abstract: A pressure-type flow controller includes a main body provided with a fluid channel between a fluid inlet and a fluid outlet and an exhaust channel between the fluid channel and an exhaust outlet; a pressure control valve fixed to the fluid inlet of the main body for opening/closing the upstream side of the fluid channel; a pressure sensor for detecting the internal pressure of the fluid channel on the downstream side of the pressure control valve; an orifice provided in the fluid channel on the downstream side of the point of branching of the exhaust channel; and an exhaust control valve for opening/closing the exhaust channel.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: August 20, 2019
    Assignee: FUIIKIN INCORPORATED
    Inventors: Kaoru Hirata, Nobukazu Ikeda, Kouji Nishino, Ryousuke Dohi, Katsuyuki Sugita
  • Publication number: 20190250648
    Abstract: A pressure-type flow rate control device includes a control valve; a pressure sensor provided downstream of the control valve; an orifice-built-in valve provided downstream of the pressure sensor; and a control unit connected to the control valve and pressure sensor. The built-in orifice valve has a valve mechanism comprising a valve seat body and a valve element for opening/closing a flow path; a drive mechanism for driving the valve mechanism, and an orifice member provided in the vicinity of the valve mechanism. The pressure-type flow rate control device further includes an opening/closing-detection mechanism for detecting the open/closed state of the valve mechanism, the control unit being configured to receive a detection signal from the opening/closing-detection mechanism.
    Type: Application
    Filed: July 25, 2017
    Publication date: August 15, 2019
    Applicant: Fujikin Incorporated
    Inventors: Kaoru HIRATA, Katsuyuki SUGITA, Nobukazu IKEDA, Kouji NISHINO
  • Publication number: 20190243391
    Abstract: A fluid control device includes a main body block including a first flow passage, and a second flow passage, a first and second fluid control units installed on an installation surface of the main body block. The first and second flow passages include a first portion extending along a first direction and a second flow passage portion orthogonal to the first direction. The second portion is formed of a hole extending from a side surface of the main body block and a sealing member.
    Type: Application
    Filed: October 12, 2017
    Publication date: August 8, 2019
    Applicant: FUJIKIN INCORPORATED
    Inventors: Kaoru HIRATA, Katsuyuki SUGITA, Takahiro IMAI, Shinya OGAWA, Kouji NISHINO, Nobukazu IKEDA
  • Patent number: 10372145
    Abstract: A pressure-type flow rate controller includes a body provided with a fluid passage which communicates a fluid inlet and a fluid outlet, a control valve for pressure control fixed to the body to open and close the fluid passage, an orifice arranged in the course of the fluid passage on the downstream side of the control valve, and a pressure sensor fixed to the body to detect the internal pressure of the fluid passage between the control valve and the orifice, wherein the fluid passage comprises a first passage portion communicating the control valve and a pressure detection chamber provided on a pressure detection surface of the pressure sensor, and a second passage portion spaced away from the first passage portion and communicating the pressure detection chamber and the orifice.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: August 6, 2019
    Assignee: Fujikin Incorporated
    Inventors: Takashi Hirose, Toshihide Yoshida, Atsushi Matsumoto, Kaoru Hirata, Nobukazu Ikeda, Kouji Nishino, Ryousuke Dohi, Katsuyuki Sugita
  • Publication number: 20190227577
    Abstract: A pressure-type flow rate control device 1, while maintaining an upstream pressure P1 of an orifice 5 at approximately at least twice a downstream pressure P2, calculates a flow factor FF of a mixed gas consisting of two types of gases mixed at a mixture ratio of X:(1?X) by FF=(k/?){2/(?+1)}1/(??1)[?/{(?+1)R}]1/2 using an average density ?, an average specific heat ratio ?, and an average gas constant R of the mixed gas that are calculated by weighting the densities, specific heat ratios, and gas constants of the two types of gases at the mixture ratio, and calculates a flow rate Q of the mixed gas passing through the orifice by Q=FF·S·P1(1/T1)1/2, where S is the orifice cross section, and P1 and T1 are respectively the pressure and temperature of the mixed gas on the upstream side of the orifice.
    Type: Application
    Filed: August 24, 2017
    Publication date: July 25, 2019
    Applicant: FUJIKIN INCORPORATED
    Inventors: Masaaki NAGASE, Kaoru HIRATA, Kouji NISHINO, Nobukazu IKEDA
  • Publication number: 20190212176
    Abstract: A substrate processing system includes a gas supply unit having a first gas flow channel. A second gas flow channel of a flow rate measurement system is connected to the first gas flow channel. The flow rate measurement system further includes a third gas flow channel connected to the second gas flow channel, and a pressure sensor and a temperature sensor that measure a pressure and a temperature, respectively, in the third gas flow channel. In a method of an embodiment, a flow rate of a gas output from a flow rate controller of the gas supply unit is calculated using a build-up method. The flow rate of a gas is calculated without using the total volume of the first gas flow channel and the second gas flow channel and temperatures in the first gas flow channel and the second gas flow channel.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 11, 2019
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Risako MIYOSHI, Norihiko AMIKURA, Kazuyuki MIURA, Masaaki NAGASE, Satoru YAMASHITA, Yohei SAWADA, Kouji NISHINO, Nobukazu IKEDA
  • Patent number: 10324029
    Abstract: A concentration measurement device including at least one light source; a measurement cell for containing a fluid to be measured; a splitter for dividing light from the light source into incident light being incident into the measurement cell and non-incident light not being incident into the measurement cell; a transmitted-light detector for detecting transmitted light that is the incident light having passed through the measurement cell; a non-incident light detector for detecting the non-incident light; and an arithmetic part for correcting a detection signal of the transmitted-light detector using a detection signal of the non-incident light detector.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: June 18, 2019
    Assignees: TOKUSHIMA UNIVERSITY, FUJIKIN INCORPORATED
    Inventors: Yoshihiro Deguchi, Masaaki Nagase, Michio Yamaji, Nobukazu Ikeda, Kouji Nishino, Masayoshi Kawashima, Kazuteru Tanaka
  • Publication number: 20190178389
    Abstract: A valve with a built-in orifice includes a base section having a housing recess and first and second flow passages; a valve seat body; an inner disc; a valve element; and an orifice body, wherein the housing recess has a wide-diameter section and a narrow-diameter section, the first flow passage is connected to a space between a wall surface of the narrow-diameter section and the orifice body to communicate with a valve chamber, and the second flow passage communicates with the valve chamber through a through hole of the orifice body and a through hole of the valve seat body.
    Type: Application
    Filed: July 25, 2017
    Publication date: June 13, 2019
    Applicant: FUJIKIN INCORPORATED
    Inventors: Yohei SAWADA, Kaoru HIRATA, Masaaki NAGASE, Kouji NISHINO, Nobukazu IKEDA
  • Patent number: 10309561
    Abstract: A flow passage sealing structure for omitting a process of welding or caulking an orifice plate and a filter plate to an orifice base and a filter base as base materials and allowing further miniaturization, includes a main block (1) including main flow passages (1a, 1b), recessed portions (12, 13) provided in side surfaces of the main block and having female screws in inner peripheral surfaces, thin plates (6, 8) abutting against the bottom surfaces of the recessed portions and having through holes, gasket rings (16, 17) abutting against the thin plates (6, 8), pressing pipelines (20, 21) having large-diameter portions and internal flow passages communicable with the main flow passages (1a, 1b) and abutting against the gasket rings, and fastening screws (22) abutting against the large-diameter portions and pressing the pressing pipelines by being inserted around the outside of the pressing pipelines and screwed into the female screws.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: June 4, 2019
    Assignee: FUJIKIN INCORPORATED
    Inventors: Ryousuke Dohi, Naofumi Yasumoto, Kouji Nishino, Nobukazu Ikeda
  • Publication number: 20190166734
    Abstract: A component-mounting device includes a mounting head, a discharging portion, and a paste receiving portion. The mounting head holds a component. The discharging portion applies paste by spraying to the component held by the mounting head. The paste receiving portion is provided on the mounting head and captures paste that has been discharged from the discharging portion and has failed to reach the component.
    Type: Application
    Filed: May 25, 2017
    Publication date: May 30, 2019
    Inventor: KOUJI IKEDA
  • Patent number: 10304457
    Abstract: According to one embodiment, a transcription support system supports transcription work to convert voice data to text. The system includes a first storage unit configured to store therein the voice data; a playback unit configured to play back the voice data; a second storage unit configured to store therein voice indices, each of which associates a character string obtained from a voice recognition process with voice positional information, for which the voice positional information is indicative of a temporal position in the voice data and corresponds to the character string; a text creating unit that creates the text in response to an operation input of a user; and an estimation unit configured to estimate already-transcribed voice positional information indicative of a position at which the creation of the text is completed in the voice data based on the voice indices.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: May 28, 2019
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hirokazu Suzuki, Nobuhiro Shimogori, Tomoo Ikeda, Kouji Ueno, Osamu Nishiyama, Manabu Nagao
  • Publication number: 20190137309
    Abstract: In a method of calibrating a flow rate control device in which a flow rate is calibrated based on comparison with a flow rate measured by a flow rate reference gauge, a predetermined permissible error range is set for a plurality of flow rate settings, and the permissible error range of at least one specific flow rate setting among the plurality of flow rate settings is set to be smaller than the predetermined permissible error range.
    Type: Application
    Filed: June 22, 2017
    Publication date: May 9, 2019
    Applicant: FUJIKIN INCORPORATED
    Inventors: Yohei SAWADA, Masaaki NAGASE, Kouji NISHINO, Nobukazu IKEDA
  • Patent number: 10232293
    Abstract: A fiber laminate includes a first fiber sheet containing first fibers, a second fiber sheet laminated on the first fiber sheet and containing second fibers, and an adhesive interposed between the first fiber sheet and the second fiber sheet. The adhesive is disposed to form a linear first region in the fiber laminate when viewed from a normal direction of a principal surface of the fiber laminate. The first fiber sheet and the second fiber sheet are adhered to each other via the first region. A gap is formed between the first fiber sheet and the second fiber sheet in a second region other than the first region.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: March 19, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Koji Motomura, Nobuhiro Nishizaki, Kouji Ikeda, Takahiko Murata, Takatoshi Mitsushima
  • Publication number: 20190075691
    Abstract: According to the present disclosure, an electronic component mounting device includes: a mounting head which picks up an electronic component from a part feeder, and transfers and mounts the electronic component on a board; a dispenser which applies a paste to a lower surface of the electronic component picked up by the mounting head, the paste being flied out from an ejection hole of the dispenser against gravity, the ejection hole opening upwardly; and a shield member which is disposed between the electronic component and the dispenser and has an opening above the ejection hole.
    Type: Application
    Filed: April 4, 2017
    Publication date: March 7, 2019
    Inventor: KOUJI IKEDA