Patents by Inventor Kouji Toyota

Kouji Toyota has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11820871
    Abstract: A method for producing aluminum oxide is provided. The method uses an aluminum-oxide-forming agent containing a partially hydrolyzed aluminum alkyl compound containing an aluminum trialkyl or a mixture thereof, and a solvent. It is thus possible to produce an aluminum oxide thin film or aluminum oxide particles on or in a substrate that is not resistant to polar solvents. A method of producing a polyolefin-based polymer nanocomposite containing zinc oxide particles or aluminum oxide particles using a solution containing a partially hydrolyzed zinc alkyl or a solution containing a partially hydrolyzed aluminum alkyl is also provided. The polyolefin-based polymer nanocomposite contains a polyolefin substrate and zinc oxide particles or aluminum oxide particles, and does not contain a dispersant. The zinc oxide particles or aluminum oxide particles have an average particle size of less than 100 nm.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: November 21, 2023
    Assignee: TOSOH FINECHEM CORPORATION
    Inventors: Koichiro Inaba, Kouji Toyota, Kenichi Haga, Toshio Naka, Toshiaki Taniike
  • Patent number: 11795277
    Abstract: A method for producing aluminum oxide is provided. The method uses an aluminum-oxide-forming agent containing a partially hydrolyzed aluminum alkyl compound containing an aluminum trialkyl or a mixture thereof, and a solvent. It is thus possible to produce an aluminum oxide thin film or aluminum oxide particles on or in a substrate that is not resistant to polar solvents. A method of producing a polyolefin-based polymer nanocomposite containing zinc oxide particles or aluminum oxide particles using a solution containing a partially hydrolyzed zinc alkyl or a solution containing a partially hydrolyzed aluminum alkyl is also provided. The polyolefin-based polymer nanocomposite contains a polyolefin substrate and zinc oxide particles or aluminum oxide particles, and does not contain a dispersant. The zinc oxide particles or aluminum oxide particles have an average particle size of less than 100 nm.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: October 24, 2023
    Assignee: TOSOH FINECHEM CORPORATION
    Inventors: Koichiro Inaba, Kouji Toyota, Kenichi Haga, Toshio Naka, Toshiaki Taniike
  • Patent number: 11482709
    Abstract: An aluminum oxide article containing at least aluminum atoms and oxygen atoms is described. When observed under a transmission electron microscope, a cross section of the aluminum oxide article contains crystallized parts, in which a crystal lattice image is recognizable, and a non-crystallized part, in which no crystal lattice image is recognizable, and has an island-and-sea structure consisting of isolated parts containing the crystallized parts and the continuous non-crystallized part. The isolated parts correspond to island parts in the island-and-sea structure, the continuous non-crystallized part corresponds to a sea part, and a plurality of the island parts are uniformly distributed in the sea part. An aluminum oxide for improving the battery performance of a lithium ion secondary battery, the scratch resistance and hardness of a cured film, and the gas barrier properties of a gas barrier film is provided.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: October 25, 2022
    Assignee: TOSOH FINECHEM CORPORATION
    Inventors: Yujin Takemoto, Masahiro Aoki, Kouji Toyota, Koichiro Inaba, Kentaro Sakai
  • Patent number: 11453786
    Abstract: A solution containing a diketone compound having an alkoxy group, a dialkylzinc represented by general formula (1) and/or a partial hydrolysate of the dialkylzinc, and a solvent is described. A method for producing a zinc oxide thin film involves applying the dialkylzinc solution or a solution containing a dialkylzinc partial hydrolysate to a base material. ZnR102??(1) In the formula, R10 is a C1-6 linear or branched alkyl group. The solution containing dialkylzinc or dialkylzinc partial hydrolysate can be handled in air, making it possible to form a transparent thin film having high adhesiveness to a substrate even with film formation in air.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: September 27, 2022
    Assignee: TOSOH FINECHEM CORPORATION
    Inventors: Kouji Toyota, Kenichi Haga
  • Publication number: 20220144657
    Abstract: A method for producing aluminum oxide is provided. The method uses an aluminum-oxide-forming agent containing a partially hydrolyzed aluminum alkyl compound containing an aluminum trialkyl or a mixture thereof, and a solvent. It is thus possible to produce an aluminum oxide thin film or aluminum oxide particles on or in a substrate that is not resistant to polar solvents. A method of producing a polyolefin-based polymer nanocomposite containing zinc oxide particles or aluminum oxide particles using a solution containing a partially hydrolyzed zinc alkyl or a solution containing a partially hydrolyzed aluminum alkyl is also provided. The polyolefin-based polymer nanocomposite contains a polyolefin substrate and zinc oxide particles or aluminum oxide particles, and does not contain a dispersant. The zinc oxide particles or aluminum oxide particles have an average particle size of less than 100 nm.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Inventors: Koichiro INABA, Kouji TOYOTA, Kenichi HAGA, Toshio NAKA, Toshiaki TANIIKE
  • Publication number: 20220145042
    Abstract: A method for producing aluminum oxide is provided. The method uses an aluminum-oxide-forming agent containing a partially hydrolyzed aluminum alkyl compound containing an aluminum trialkyl or a mixture thereof, and a solvent. It is thus possible to produce an aluminum oxide thin film or aluminum oxide particles on or in a substrate that is not resistant to polar solvents. A method of producing a polyolefin-based polymer nanocomposite containing zinc oxide particles or aluminum oxide particles using a solution containing a partially hydrolyzed zinc alkyl or a solution containing a partially hydrolyzed aluminum alkyl is also provided. The polyolefin-based polymer nanocomposite contains a polyolefin substrate and zinc oxide particles or aluminum oxide particles, and does not contain a dispersant. The zinc oxide particles or aluminum oxide particles have an average particle size of less than 100 nm.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Inventors: Koichiro INABA, Kouji TOYOTA, Kenichi HAGA, Toshio NAKA, Toshiaki TANIIKE
  • Patent number: 11267940
    Abstract: A method for producing aluminum oxide is provided. The method uses an aluminum-oxide-forming agent containing a partially hydrolyzed aluminum alkyl compound containing an aluminum trialkyl or a mixture thereof, and a solvent. It is thus possible to produce an aluminum oxide thin film or aluminum oxide particles on or in a substrate that is not resistant to polar solvents. A method of producing a polyolefin-based polymer nanocomposite containing zinc oxide particles or aluminum oxide particles using a solution containing a partially hydrolyzed zinc alkyl or a solution containing a partially hydrolyzed aluminum alkyl is also provided. The polyolefin-based polymer nanocomposite contains a polyolefin substrate and zinc oxide particles or aluminum oxide particles, and does not contain a dispersant. The zinc oxide particles or aluminum oxide particles have an average particle size of less than 100 nm.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: March 8, 2022
    Assignee: TOSOH FINECHEM CORPORATION
    Inventors: Koichiro Inaba, Kouji Toyota, Kenichi Haga, Toshio Naka, Toshiaki Taniike
  • Publication number: 20210009813
    Abstract: A solution containing a diketone compound having an alkoxy group, a dialkylzinc represented by general formula (1) and/or a partial hydrolysate of the dialkylzinc, and a solvent is described. A method for producing a zinc oxide thin film involves applying the dialkylzinc solution or a solution containing a dialkylzinc partial hydrolysate to a base material. ZnR102 ??(1) In the formula, R10 is a C1-6 linear or branched alkyl group. The solution containing dialkylzinc or dialkylzinc partial hydrolysate can be handled in air, making it possible to form a transparent thin film having high adhesiveness to a substrate even with film formation in air.
    Type: Application
    Filed: January 30, 2018
    Publication date: January 14, 2021
    Inventors: Kouji TOYOTA, Kenichi HAGA
  • Publication number: 20200144623
    Abstract: An aluminum oxide article containing at least aluminum atoms and oxygen atoms is described. When observed under a transmission electron microscope, a cross section of the aluminum oxide article contains crystallized parts, in which a crystal lattice image is recognizable, and a non-crystallized part, in which no crystal lattice image is recognizable, and has an island-and-sea structure consisting of isolated parts containing the crystallized parts and the continuous non-crystallized part. The isolated parts correspond to island parts in the island-and-sea structure, the continuous non-crystallized part corresponds to a sea part, and a plurality of the island parts are uniformly distributed in the sea part. An aluminum oxide for improving the battery performance of a lithium ion secondary battery, the scratch resistance and hardness of a cured film, and the gas barrier properties of a gas barrier film is provided.
    Type: Application
    Filed: March 14, 2018
    Publication date: May 7, 2020
    Applicant: Tosoh Finechem Corporation
    Inventors: Yujin TAKEMOTO, Masahiro AOKI, Kouji TOYOTA, Koichiro INABA, Kentaro SAKAI
  • Publication number: 20190276612
    Abstract: A method for producing aluminum oxide is provided. The method uses an aluminum-oxide-forming agent containing a partially hydrolyzed aluminum alkyl compound containing an aluminum trialkyl or a mixture thereof, and a solvent. It is thus possible to produce an aluminum oxide thin film or aluminum oxide particles on or in a substrate that is not resistant to polar solvents. A method of producing a polyolefin-based polymer nanocomposite containing zinc oxide particles or aluminum oxide particles using a solution containing a partially hydrolyzed zinc alkyl or a solution containing a partially hydrolyzed aluminum alkyl is also provided. The polyolefin-based polymer nanocomposite contains a polyolefin substrate and zinc oxide particles or aluminum oxide particles, and does not contain a dispersant. The zinc oxide particles or aluminum oxide particles have an average particle size of less than 100 nm.
    Type: Application
    Filed: May 12, 2017
    Publication date: September 12, 2019
    Inventors: Koichiro INABA, Kouji TOYOTA, Kenichi HAGA, Toshio NAKA, Toshiaki TANIIKE
  • Patent number: 10381488
    Abstract: A dialkylzinc partial hydrolysate-containing solution which can be handled in air and can form a zinc oxide thin film in air and a method for producing the zinc oxide thin film are provided. The dialkylzinc partial hydrolysate-containing solution contains a partial hydrolysate of dialkyl zinc represented by general formula (1) and a solvent which has a boiling point of 160° C. or higher, an amide structure represented by general formula (2), and which is an organic compound having a cyclic structure. The partial hydrolysate is the dialkylzinc hydrolyzed with water in a molar ratio in the range of 0.4 to 0.9 with respect to zinc in the dialkylzinc. A method for producing the zinc oxide thin film by applying the dialkylzinc partial hydrolysate-containing solution to a base material is also provided.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: August 13, 2019
    Assignee: Tosoh Finechem Corporation
    Inventors: Kouji Toyota, Koichiro Inaba, Toshio Naka
  • Publication number: 20180145179
    Abstract: A dialkylzinc partial hydrolysate-containing solution which can be handled in air and can form a zinc oxide thin film in air and a method for producing the zinc oxide thin film are provided. The dialkylzinc partial hydrolysate-containing solution contains a partial hydrolysate of dialkyl zinc represented by general formula (1) and a solvent which has a boiling point of 160° C. or higher, an amide structure represented by general formula (2), and which is an organic compound having a cyclic structure. The partial hydrolysate is the dialkylzinc hydrolyzed with water in a molar ratio in the range of 0.4 to 0.9 with respect to zinc in the dialkylzinc. A method for producing the zinc oxide thin film by applying the dialkylzinc partial hydrolysate-containing solution to a base material is also provided.
    Type: Application
    Filed: May 10, 2016
    Publication date: May 24, 2018
    Inventors: Kouji TOYOTA, Koichiro INABA, Toshio NAKA
  • Publication number: 20170334734
    Abstract: The present invention relates to a composition for producing a zinc oxide thin film containing a group 2 element, said composition being a solution in which a partial hydrolysate of an organic zinc compound represented by formula (1) and a group 2 element are dissolved in an organic solvent. The solution can additionally include a group 13 element. Formula (1): R1-Zn-R1 (in the formula, R1 is a straight-chain or branched alkyl group having 1-7 carbon atoms). Provided are: a composition for producing a zinc oxide thin film containing a group 2 element, said composition making it possible to form a zinc oxide thin film containing a group 2 element by performing coating and film formation with one solution; and a production method for the composition.
    Type: Application
    Filed: October 1, 2015
    Publication date: November 23, 2017
    Inventors: Kenichi HAGA, Kouji TOYOTA, Shizuo TOMIYASU, Koichiro INABA
  • Patent number: 9156857
    Abstract: [Object] To improve heat stability of diethylzinc which is used for a catalyst of polymerizing, an organic synthetic reaction reagent and a raw materials for providing a zinc film by MOCVD. And to offer the diethylzinc composition being superior in heat stability, even if it handles for a long term a metal zinc particle does not precipitate. [Means for Solving Problem] Use a diethylzinc composition added a compound which has particular carbon-carbon double bond to a diethylzinc.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: October 13, 2015
    Assignee: TOSOH FINECHEM CORPORATION
    Inventors: Kenichi Haga, Shizuo Tomiyasu, Kohichi Tokudome, Kouji Toyota, Koichiro Inaba
  • Patent number: 9096441
    Abstract: Disclosed is a composition for forming a zinc oxide thin film, which contains an organic zinc compound as a starting material, is not ignitable, and can be easily handled. The composition for forming a zinc oxide thin film is capable of forming a transparent zinc oxide thin film which is not doped or doped with a group 3B element by being heated at 300° C. or less. Also disclosed is a method for obtaining a transparent zinc oxide thin film, which is not doped or doped with a group 3B element, using the composition. Specifically, the composition for forming a zinc oxide thin film contains a product which is obtained by partially hydrolyzing an organic zinc compound by adding water to the organic zinc compound or a solution of the organic zinc compound and a group 3B element compound. In cases when a group 3B element compound is contained, the molar ratio of the group 3B element compound to the organic zinc compound is within the range of 0.005-0.3.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: August 4, 2015
    Assignee: TOSOH FINECHEM CORPORATION
    Inventors: Koichiro Inaba, Kouji Toyota, Kenichi Haga, Kouichi Tokudome
  • Publication number: 20130281724
    Abstract: [Object] To improve heat stability of diethylzinc which is used for a catalyst of polymerizing, an organic synthetic reaction reagent and a raw materials for providing a zinc film by MOCVD. And to offer the diethylzinc composition being superior in heat stability, even if it handles for a long term a metal zinc particle does not precipitate. [Means for solving problem] Use a diethylzinc composition added a compound which has particular carbon-carbon double bond to a diethylzinc.
    Type: Application
    Filed: December 15, 2011
    Publication date: October 24, 2013
    Applicant: TOSOH FINECHEM CORPORATION
    Inventors: Kenichi Haga, Shizuo Tomiyasu, Kohichi Tokudome, Kouji Toyota, Koichiro Inaba
  • Publication number: 20120094019
    Abstract: Disclosed is a composition for forming a zinc oxide thin film, which contains an organic zinc compound as a starting material, is not ignitable, and can be easily handled. The composition for forming a zinc oxide thin film is capable of forming a transparent zinc oxide thin film which is not doped or doped with a group 3B element by being heated at 300° C. or less. Also disclosed is a method for obtaining a transparent zinc oxide thin film, which is not doped or doped with a group 3B element, using the composition. Specifically, the composition for forming a zinc oxide thin film contains a product which is obtained by partially hydrolyzing an organic zinc compound by adding water to the organic zinc compound or a solution of the organic zinc compound and a group 3B element compound. In cases when a group 3B element compound is contained, the molar ratio of the group 3B element compound to the organic zinc compound is within the range of 0.005-0.3.
    Type: Application
    Filed: April 21, 2010
    Publication date: April 19, 2012
    Applicant: Tocoh Finefhem Corporation
    Inventors: Koichiro Inaba, Kouji Toyota, Kenichi Haga, Kouichi Tokudome
  • Patent number: 7910764
    Abstract: A polymethylaluminoxane preparation exhibiting excellent storage stability with a high yield is provided. A polymethylaluminoxane preparation is formed by thermal decomposition of an alkylaluminum compound having an aluminum-oxygen-carbon bond, the alkylaluminum compound being formed by a reaction between trimethylaluminum and an oxygen-containing organic compound.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: March 22, 2011
    Assignee: Tosoh Finechem Corporation
    Inventors: Eiichi Kaji, Kouji Toyota, Hideki Kanazawa
  • Publication number: 20070197745
    Abstract: A polymethylaluminoxane preparation exhibiting excellent storage stability with a high yield is provided. A polymethylaluminoxane preparation is formed by thermal decomposition of an alkylaluminum compound having an aluminum-oxygen-carbon bond, the alkylaluminum compound being formed by a reaction between trimethylaluminum and an oxygen-containing organic compound.
    Type: Application
    Filed: March 18, 2005
    Publication date: August 23, 2007
    Inventors: Eiichi Kaji, Kouji Toyota, Hideki Kanazawa
  • Patent number: 6881695
    Abstract: An olefin polymerization catalyst is provided which makes use of a modified methylaluminoxane and thus stably exhibits an activity equivalent to, or higher than, the activity achieved by polymethylaluminoxane. Specifically, the olefin polymerization catalyst is in the form of a modified methylaluminoxane preparation prepared from: an organoaluminum compound represented by the following general formula (I): R1mAlX3-m??(I) wherein R1 represents a straight-chained or branched hydrocarbon group selected from the group consisting of alkyl, alkenyl, and aryl groups having 2 to 20 carbon atoms; X represents a hydrogen atom, halogen atom, alkoxy group, or allyloxy group; and 0<m?3; and trimethyl aluminum, wherein the mole fraction of methyl group of the aluminoxane unit with respect to the total number of moles of the hydrocarbon group having 2 to 20 carbon atoms and methyl group present in the modified methylaluminoxane preparation is 65 mol % or greater.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: April 19, 2005
    Assignee: Tosoh Finechem Corporation
    Inventors: Eiichi Kaji, Kouji Toyota, Toshihiro Takasugi, Hideki Kanazawa