Patents by Inventor Kounosuke Kitamura

Kounosuke Kitamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7629714
    Abstract: A rocking actuator and a laser machining apparatus which can suppress a temperature rise of a permanent magnet in a moving-magnet actuator. Even when a steerable mirror is positioned by rapid and continuous motions, highly reliable machining can be performed without degrading machining throughput or hole position accuracy. A cooling jacket for cooling a casing and heat transfer units brought into contact with a coil and the casing are provided. Heat generated in the coil is introduced to the casing through the heat transfer bypass units. Thus, the temperature rise of the coil is suppressed. Radial grooves are provided in the permanent magnet opposed to the coil so as to prevent an eddy current from appearing therein. Groove depth is made not smaller than skin depth expressed by a function of volume resistivity and permeability of the permanent magnet and a fundamental frequency of a current applied to the coil.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: December 8, 2009
    Assignees: Hitachi Via Mechanics, Ltd., National University Corporation Nagoya Institute of Technology
    Inventors: Souichi Toyama, Kounosuke Kitamura, Akira Doi, Hiromu Hirai, Kenta Seki, Yoshiaki Kano
  • Patent number: 7522262
    Abstract: A method for determining a position of a reference point in which there is no influence of aberration of a camera lens or the like, but an error caused by a failure in shape of an alignment mark can be reduced. An alignment mark consisting of a plurality of pattern portions (and background portions) centering at a design reference point is provided in advance. Positions of centers of border lines of the patterns are calculated. Obtained coordinate values of the centers are averaged in each axial direction. The averaged coordinate values are regarded as coordinate values of a machining reference point. Thus, even when a defect occurs in any pattern portion, an error caused by the defect is reduced so that the accuracy in machining can be improved.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: April 21, 2009
    Assignee: Hitachi Via Mechanics Ltd.
    Inventors: Hiroyuki Sugawara, Takeshi Goto, Kounosuke Kitamura, Hiroshi Aoyama
  • Publication number: 20080036309
    Abstract: A rocking actuator and a laser machining apparatus which can suppress a temperature rise of a permanent magnet in a moving-magnet actuator. Even when a steerable mirror is positioned by rapid and continuous motions, highly reliable machining can be performed without degrading machining throughput or hole position accuracy. A cooling jacket for cooling a casing and heat transfer units brought into contact with a coil and the casing are provided. Heat generated in the coil is introduced to the casing through the heat transfer bypass units. Thus, the temperature rise of the coil is suppressed. Radial grooves are provided in the permanent magnet opposed to the coil so as to prevent an eddy current from appearing therein. Groove depth is made not smaller than skin depth expressed by a function of volume resistivity and permeability of the permanent magnet and a fundamental frequency of a current applied to the coil.
    Type: Application
    Filed: August 3, 2007
    Publication date: February 14, 2008
    Applicants: Hitachi Via Mechanics, Ltd., National University Corporation Nagoya Institute of Technology
    Inventors: Souichi Toyama, Kounosuke Kitamura, Akira Doi, Hiromu Hirai, Kenta Seki, Yoshiaki Kano
  • Patent number: 7282094
    Abstract: To precisely predict the distribution of densities and sizes of void defects comprising voids and inner wall oxide membranes in a single crystal. The computer-based simulation determines, at steps 1 to 7, the distribution of temperatures within a single crystal 14 growing from a melt 12 from the time of its pulling-up to the time of its completing cooling with due consideration paid to convection currents in the melt 12. The computer-based simulation, at steps 8 to 15, determines the density of voids considering the cooling process of the single crystal separated from the melt, that is, the pulling-up speed of the single crystal after the separation from the melt, and reflecting the effect of slow and rapid cooling of the single crystal in the result, and relates the radius of voids with the thickness of inner wall oxide membrane developed around the voids.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: October 16, 2007
    Assignee: Sumco Corporation
    Inventors: Kounosuke Kitamura, Jun Furukawa, Naoki Ono
  • Patent number: 7195669
    Abstract: A silicon single crystal rod (24) is pulled from a silicon melt (13) made molten by a heater (17), and a change in diameter of the silicon single crystal rod every predetermined time is fed back to a pulling speed of the silicon single crystal rod and a temperature of the heater, thereby controlling a diameter of the silicon single crystal rod. A PID control in which a PID constant is changed on a plurality of stages is applied to a method which controls the pulling speed of the silicon single crystal rod so that the silicon single crystal rod has a target diameter and a method which controls a heater temperature so that the silicon single crystal rod has the target temperature. A set pulling speed for the silicon single crystal rod is set so that V/G becomes constant, and an actual pulling speed is accurately controlled so as to match with the set pulling speed, thereby suppressing a fluctuation in diameter of the single crystal rod.
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: March 27, 2007
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventors: Daisuke Wakabayashi, Masao Saito, Satoshi Sato, Jun Furukawa, Kounosuke Kitamura
  • Publication number: 20060243192
    Abstract: To precisely predict the distribution of densities and sizes of void defects comprising voids and inner wall oxide membranes in a single crystal. The computer-based simulation determines, at steps 1 to 7, the distribution of temperatures within a single crystal 14 growing from a melt 12 from the time of its pulling-up to the time of its completing cooling with due consideration paid to convection currents in the melt 12. The computer-based simulation, at steps 8 to 15, determines the density of voids considering the cooling process of the single crystal separated from the melt, that is, the pulling-up speed of the single crystal after the separation from the melt, and reflecting the effect of slow and rapid cooling of the single crystal in the result, and relates the radius of voids with the thickness of inner wall oxide membrane developed around the voids.
    Type: Application
    Filed: May 30, 2003
    Publication date: November 2, 2006
    Inventors: Kounosuke Kitamura, Jun Furukawa, Naoki Ibi
  • Publication number: 20060130737
    Abstract: A silicon single crystal rod (24) is pulled from a silicon melt (13) molten by a heater (17), and a change in diameter of the silicon single crystal rod every predetermined time is fed back to a pulling speed of the silicon single crystal rod and a temperature of the heater, thereby controlling a diameter of the silicon single crystal rod. A PID control in which a PID constant is changed on a plurality of stages is applied to a method which controls the pulling speed of the silicon single crystal rod so that the silicon single crystal rod has a target diameter and a method which controls a heater temperature so that the silicon single crystal rod has the target temperature. A set pulling speed for the silicon single crystal rod is set so that V/G becomes constant, and an actual pulling speed is accurately controlled so as to match with the set pulling speed, thereby suppressing a fluctuation in diameter of the single crystal rod.
    Type: Application
    Filed: July 7, 2003
    Publication date: June 22, 2006
    Inventors: Daisuke Wakabayashi, Masao Saito, Satoshi Sato, Jun Furukawa, Kounosuke Kitamura
  • Publication number: 20050270518
    Abstract: A method for determining a position of a reference point in which there is no influence of aberration of a camera lens or the like, but an error caused by a failure in shape of an alignment mark can be reduced. An alignment mark consisting of a plurality of pattern portions (and background portions) centering at a design reference point is provided in advance. Positions of centers of border lines of the patterns are calculated. Obtained coordinate values of the centers are averaged in each axial direction. The averaged coordinate values are regarded as coordinate values of a machining reference point. Thus, even when a defect occurs in any pattern portion, an error caused by the defect is reduced so that the accuracy in machining can be improved.
    Type: Application
    Filed: June 1, 2005
    Publication date: December 8, 2005
    Applicant: Hitachi Via Mechanics Ltd.
    Inventors: Hiroyuki Sugawara, Takeshi Goto, Kounosuke Kitamura, Hiroshi Aoyama
  • Patent number: 6451107
    Abstract: A first step models a hot zone in a pulling apparatus of a single crystal as a mesh structure, and a second step inputs physical property values of each member corresponding to meshes combined for each member of the hot zone into a computer. A third step obtains the surface temperature distribution of each member on the basis of the calorific power of a heater and the emissivity of each member, and a fourth step obtains the internal temperature distribution of each member on the basis of the surface temperature distribution and the thermal conductivity of each member, and then further obtains the internal temperature distribution of a molten liquid being in consideration of convection. A fifth step obtains the shape of the solid-liquid interface between the single crystal and the molten liquid in accordance with an isothermal line including a tri-junction of the single crystal. A sixth step repeats said third to fifth steps until the tri-junction becomes the melting point of the single crystal.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: September 17, 2002
    Assignee: Mitsubishi Materials Silicon Corporation
    Inventors: Kounosuke Kitamura, Naoki Ono
  • Publication number: 20010042504
    Abstract: A first step models a hot zone in a pulling apparatus of a single crystal as a mesh structure, and a second step inputs physical property values of each member corresponding to meshes combined for each member of the hot zone into a computer. A third step obtains the surface temperature distribution of each member on the basis of the calorific power of a heater and the emissivity of each member, and a fourth step obtains the internal temperature distribution of each member on the basis of the surface temperature distribution and the thermal conductivity of each member, and then further obtains the internal temperature distribution of a molten liquid being in consideration of convection. A fifth step obtains the shape of the solid-liquid interface between the single crystal and the molten liquid in accordance with an isothermal line including a tri-junction of the single crystal. A sixth step repeats said third to fifth steps until the tri-junction becomes the melting point of the single crystal.
    Type: Application
    Filed: February 26, 2001
    Publication date: November 22, 2001
    Applicant: Mitsubishi Materials Silicon Corporation
    Inventors: Kounosuke Kitamura, Naoki Ono