Patents by Inventor Koustubh Ranade

Koustubh Ranade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230303707
    Abstract: The present disclosure relates to the use of anti-PAD4 autoantibodies as a clinical biomarker for rheumatoid arthritis (RA) treatment. The disclosure further provides an assay to detect anti-PAD4 autoantibodies, assay kits for the detection of anti-PAD4 autoantibodies, as well as computer implemented diagnostic methods.
    Type: Application
    Filed: February 14, 2023
    Publication date: September 28, 2023
    Applicant: MEDIMMUNE LIMITED
    Inventors: Rachel Patricia MOATE, Alex GODWOOD, Ethan Paul GRANT, Martin Michael Kari SCHWICKART, Carlos CHAVEZ, Meina LIANG, Tomas Mikael MUSTELIN, Zhengbin YAO, Koustubh RANADE
  • Patent number: 11708610
    Abstract: The present invention is based on the discovery of genetic polymorphisms that are associated with cardiovascular disorders, particularly acute coronary events such as myocardial infarction and stroke, and genetic polymorphisms that are associated with responsiveness of an individual to treatment of cardiovascular disorders with statin. In particular, the present invention relates to nucleic acid molecules containing the polymorphisms, variant proteins encoded by such nucleic acid molecules, reagents for detecting the polymorphic nucleic acid molecules and proteins, and methods of using the nucleic acid and proteins as well as methods of using reagents for their detection.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: July 25, 2023
    Assignee: Celera Corporation
    Inventors: Olga Iakoubova, James J. Devlin, Zenta Tsuchihashi, Peter Shaw, Lynn Marie Ploughman, Kim E. Zerba, Koustubh Ranade, Todd Kirchgessner
  • Publication number: 20230145764
    Abstract: The disclosure generally relates to methods for treating non-small cell lung cancer patients based on use of blood-based tumor mutation burden to predict overall survival in patients treated with durvalumab, tremelimumab, and/or a chemotherapy agent. The disclosure also relates to methods for treating non-small cell lung cancer patients based on identification of mutations in circulating tumor DNA associated with sensitivity or resistance to immunotherapy.
    Type: Application
    Filed: October 7, 2022
    Publication date: May 11, 2023
    Inventors: Koustubh RANADE, Brandon W. HIGGS, Rajiv G. RAJA, Philip Z. BROHAWN, Han SI, Michael A. KUZIORA
  • Patent number: 11613580
    Abstract: The present disclosure relates to the use of anti-PAD4 autoantibodies as a clinical biomarker for rheumatoid arthritis (RA) treatment. The disclosure further provides an assay to detect anti-PAD4 autoantibodies, assay kits for the detection of anti-PAD4 autoantibodies, as well as computer implemented diagnostic methods.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: March 28, 2023
    Assignee: MEDIMMUNE LIMITED
    Inventors: Rachel Patricia Moate, Alex Godwood, Ethan Paul Grant, Martin Michael Kari Schwickart, Carlos Chavez, Meina Liang, Tomas Mikael Mustelin, Zhengbin Yao, Koustubh Ranade
  • Publication number: 20220373539
    Abstract: The present invention relates to the use of components of the IL23 pathway as biomarkers, e.g., IL22, LCN2 and combinations thereof, to stratify or identify populations of patients suffering from IL23-mediated diseases (e.g., Crohn's disease) responsive to treatment with an anti-IL23 antagonist (including, e.g., anti-IL23 antibodies or antigen-binding fragments thereof). Levels of IL23 pathway biomarkers above or below a predetermined threshold can be used, for example, (i) to determine whether a patient with an IL23-mediated disease or disorder such a Crohn's disease is eligible or non-eligible for treatment with a therapeutic agent (e.g., an anti-IL23 antibody), (ii) to determine whether treatment with a certain agent should be commenced, suspended, or modified, (iii) to diagnose whether the IL23-mediated disease is treatable or not treatable with a specific therapeutic agent, or (iv) to predict the outcome of treating the IL23-mediated disease with a specific therapeutic agent.
    Type: Application
    Filed: May 24, 2021
    Publication date: November 24, 2022
    Inventors: Robert W. Georgantas, III, Chris Morehouse, Brandon Higgs, Koustubh Ranade, Katie Streicher, William Rees, Meina Liang, Raffaella Faggioni, Jing Li, Inna Vainshtein, Yen-Wah Lee, Jingjing Chen, Robert A. Gasser, JR.
  • Publication number: 20220144935
    Abstract: The present invention relates to the use of the Chemokine (C—C motif) ligand 20 (CCL20) as a biomarker to stratify or identify populations of patients suffering from interleukin-23 (IL23)-mediated diseases (e.g., Crohn's disease) responsive to treatment with an, anti-IL23 antagonist (including, e.g., anti-IL23 antibodies). Levels of CCL20 above or below a predetermined threshold can be used, for example, (i) to determine whether a patient with an IL23-mediated disease or disorder such a Crohn's disease is eligible or non-eligible for treatment with a therapeutic agent, (ii) to determine whether treatment with a certain agent should be commenced, suspended, or modified, (iii) to diagnose whether the IL23-mediated disease is treatable or not treatable with a specific therapeutic agent, or (iv) to predict the outcome of treating the IL23-mediated disease with a specific therapeutic agent. CCL20 can be used in combination with other IL23 pathway biomarkers such as IL22 and/or lipocalin-2 (LCN2).
    Type: Application
    Filed: November 29, 2021
    Publication date: May 12, 2022
    Inventors: Robert W. Georgantas, III, Chris Morehouse, Brandon Higgs, Koustubh Ranade, Katie Streicher, William Rees, Meina Liang, Raffaella Faggioni, Jing Li, Inna Vainshtein, Yen-Wah Lee, Jingjing Chen, Robert A. Gasser, JR.
  • Patent number: 11220541
    Abstract: The present invention relates to the use of the Chemokine (C—C motif) ligand 20 (CCL20) as a biomarker to stratify or identify populations of patients suffering from interleukin-23 (IL23)-mediated diseases (e.g., Crohn's disease) responsive to treatment with an, anti-IL23 antagonist (including, e.g., anti-IL23 antibodies). Levels of CCL20 above or below a predetermined threshold can be used, for example, (i) to determine whether a patient with an IL23-mediated disease or disorder such a Crohn's disease is eligible or non-eligible for treatment with a therapeutic agent, (ii) to determine whether treatment with a certain agent should be commenced, suspended, or modified, (iii) to diagnose whether the IL23-mediated disease is treatable or not treatable with a specific therapeutic agent, or (iv) to predict the outcome of treating the IL23-mediated disease with a specific therapeutic agent. CCL20 can be used in combination with other IL23 pathway biomarkers such as IL22 and/or lipocalin-2 (LCN2).
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: January 11, 2022
    Assignees: AMGEN INC., MEDIMMUNE, LLC
    Inventors: Robert W. Georgantas, III, Chris Morehouse, Brandon Higgs, Koustubh Ranade, Katie Streicher, William Rees, Meina Liang, Raffaella Faggioni, Jing Li, Inna Vainshtein, Yen-Wah Lee, Jingjing Chen, Robert A. Gasser, Jr.
  • Publication number: 20210332434
    Abstract: The present invention is based on the discovery of genetic polymorphisms that are associated with cardiovascular disorders, particularly acute coronary events such as myocardial infarction and stroke, and genetic polymorphisms that are associated with responsiveness of an individual to treatment of cardiovascular disorders with statin. In particular, the present invention relates to nucleic acid molecules containing the polymorphisms, variant proteins encoded by such nucleic acid molecules, reagents for detecting the polymorphic nucleic acid molecules and proteins, and methods of using the nucleic acid and proteins as well as methods of using reagents for their detection.
    Type: Application
    Filed: February 26, 2021
    Publication date: October 28, 2021
    Inventors: Michele CARGILL, Olga IAKOUBOVA, James J. DEVLIN, Zenta TSUCHIHASHI, Peter SHAW, Lynn Marie PLOUGHMAN, Kim E. ZERBA, Koustubh RANADE, Todd KIRCHGESSNER
  • Patent number: 11016099
    Abstract: The present invention relates to the use of components of the IL23 pathway as biomarkers, e.g., IL22, LCN2 and combinations thereof, to stratify or identify populations of patients suffering from IL23-mediated diseases (e.g., Crohn's disease) responsive to treatment with an anti-IL23 antagonist (including, e.g., anti-IL23 antibodies or antigen-binding fragments thereof). Levels of IL23 pathway biomarkers above or below a predetermined threshold can be used, for example, (i) to determine whether a patient with an IL23-mediated disease or disorder such a Crohn's disease is eligible or non-eligible for treatment with a therapeutic agent (e.g., an ant-IL23 antibody), (ii) to determine whether treatment with a certain agent should be commenced, suspended, or modified, (iii) to diagnose whether the IL23-mediated disease is treatable or not treatable with a specific therapeutic agent, or (iv) to predict the outcome of treating the IL23-mediated disease with a specific therapeutic agent.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: May 25, 2021
    Assignees: AMGEN INC., MEDIMMUNE, LLC
    Inventors: Robert W. Georgantas, III, Chris Morehouse, Brandon Higgs, Koustubh Ranade, Katie Streicher, William Rees, Meina Liang, Raffaella Faggioni, Jing Li, Inna Vainshtein, Yen-Wah Lee, Jingjing Chen, Robert A. Gasser, Jr.
  • Patent number: 10982281
    Abstract: The present invention is based on the discovery of genetic polymorphisms that are associated with cardiovascular disorders, particularly acute coronary events such as myocardial infarction and stroke, and genetic polymorphisms that are associated with responsiveness of an individual to treatment of cardiovascular disorders with statin. In particular, the present invention relates to nucleic acid molecules containing the polymorphisms, variant proteins encoded by such nucleic acid molecules, reagents for detecting the polymorphic nucleic acid molecules and proteins, and methods of using the nucleic acid and proteins as well as methods of using reagents for their detection.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: April 20, 2021
    Assignee: Celera Corporation
    Inventors: Olga Iakoubova, James J. Devlin, Zenta Tsuchihashi, Peter Shaw, Lynn Marie Ploughman, Kim E. Zerba, Koustubh Ranade, Todd Kirchgessner
  • Publication number: 20200317793
    Abstract: The present disclosure relates to the use of anti-PAD4 autoantibodies as a clinical biomarker for rheumatoid arthritis (RA) treatment. The disclosure further provides an assay to detect anti-PAD4 autoantibodies, assay kits for the detection of anti-PAD4 autoantibodies, as well as computer implemented diagnostic methods.
    Type: Application
    Filed: May 23, 2017
    Publication date: October 8, 2020
    Inventors: Rachel Patricia MOATE, Alex GODWOOD, Ethan Paul GRANT, Martin Michael Kari SCHWICKART, Carlos CHAVEZ, Meina LIANG, Tomas Mikael MUSTELIN, Zhengbin YAO, Koustubh RANADE
  • Patent number: 10775388
    Abstract: This disclosure provides a robust, sensitive, and specific assay for the detection and measurement of periostin levels in samples obtained from human patients having, or suspected of having an IL-13-mediated disease or disorder. The disclosure further provides novel antiperiostin monoclonal antibodies that recognize at least isoforms 1, 2, 3, 4, 7, and 8 of human periostin, and assay kits comprising one or more of these antibodies.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: September 15, 2020
    Assignees: MEDIMMUNE, LLC, ABBOTT LABORATORIES
    Inventors: Partha S. Chowdhury, Reena Varkey, Meina Liang, Yen-Wah Lee, Katie Streicher, Koustubh Ranade, Ethan Grant, Lydia Greenlees, Yihong Yao, Melissa Parker, Gerard Davis, Nicolette Jeanblanc, Susan Brophy, Bruce Dille
  • Publication number: 20200262907
    Abstract: The present invention relates to the use of the Chemokine (C—C motif) ligand 20 (CCL20) as a biomarker to stratify or identify populations of patients suffering from interleukin-23 (IL23)-mediated diseases (e.g., Crohn's disease) responsive to treatment with an, anti-IL23 antagonist (including, e.g., anti-IL23 antibodies). Levels of CCL20 above or below a predetermined threshold can be used, for example, (i) to determine whether a patient with an IL23-mediated disease or disorder such a Crohn's disease is eligible or non-eligible for treatment with a therapeutic agent, (ii) to determine whether treatment with a certain agent should be commenced, suspended, or modified, (iii) to diagnose whether the IL23-mediated disease is treatable or not treatable with a specific therapeutic agent, or (iv) to predict the outcome of treating the IL23-mediated disease with a specific therapeutic agent. CCL20 can be used in combination with other IL23 pathway biomarkers such as IL22 and/or lipocalin-2 (LCN2).
    Type: Application
    Filed: December 16, 2016
    Publication date: August 20, 2020
    Inventors: Robert W. Georgantas, III, Chris Morehouse, Brandon Higgs, Koustubh Ranade, Katie Streicher, William Rees, Meina Liang, Raffaella Faggioni, Jing Li, Inna Vainshtein, Yen-Wah Lee, Jinging Chen, Robert A. Gasser, JR.
  • Publication number: 20200190598
    Abstract: The disclosure generally relates to methods for treating non-small cell lung cancer patients based on use of blood-based tumor mutation burden to predict overall survival in patients treated with durvalumab, tremelimumab, and/or a chemotherapy agent. The disclosure also relates to methods for treating non-small cell lung cancer patients based on identification of mutations in circulating tumor DNA associated with sensitivity or resistance to immunotherapy.
    Type: Application
    Filed: December 11, 2019
    Publication date: June 18, 2020
    Inventors: KOUSTUBH RANADE, BRANDON W. HIGGS, RAJIV G. RAJA, PHILIP Z. BROHAWN, HAN SI, MIKE KUZIORA
  • Publication number: 20180305762
    Abstract: The present invention is based on the discovery of genetic polymorphisms that are associated with cardiovascular disorders, particularly acute coronary events such as myocardial infarction and stroke, and genetic polymorphisms that are associated with responsiveness of an individual to treatment of cardiovascular disorders with statin. In particular, the present invention relates to nucleic acid molecules containing the polymorphisms, variant proteins encoded by such nucleic acid molecules, reagents for detecting the polymorphic nucleic acid molecules and proteins, and methods of using the nucleic acid and proteins as well as methods of using reagents for their detection.
    Type: Application
    Filed: February 12, 2018
    Publication date: October 25, 2018
    Inventors: Michele CARGILL, Olga IAKOUBOVA, James J. DEVLIN, Zenta TSUCHIHASHI, Peter SHAW, Lynn Marie PLOUGHMAN, Kim E. ZERBA, Koustubh RANADE, Todd KIRCHGESSNER
  • Publication number: 20180282417
    Abstract: Disclosed are methods for treating cancer (e.g., solid tumor cancers, lung cancer, bladder head and neck cancer) with an anti-PD-L1 antibody in a patient identified as being responsive to anti-PD-L1 antibody therapy by detecting a mutation in one or more disclosed circulating tumor DNA (ctDNA) markers. Also disclosed are methods for determining the efficacy of anti-PD-L1 therapeutic antibody treatment in a patient having lung cancer or bladder cancer comprising detecting variant allele frequency in ctDNA in plasma samples and determining the difference of the variant allele frequency in ctDNA between the first and at least second plasma samples, wherein a decrease in the variant allele frequency in the at least second plasma sample relative to the first plasma sample identifies the anti-PD-L1 antibody treatment as effective.
    Type: Application
    Filed: March 30, 2018
    Publication date: October 4, 2018
    Inventors: Brandon Higgs, Koustubh Ranade, Carlos Bais, Philip Brohawn, Michael Kuziora, Rajiv Raja
  • Publication number: 20180252728
    Abstract: The present invention relates to the use of components of the IL23 pathway as biomarkers, e.g., IL22, LCN2 and combinations thereof, to stratify or identify populations of patients suffering from IL23-mediated diseases (e.g., Crohn's disease) responsive to treatment with an anti-IL23 antagonist (including, e.g., anti-IL23 antibodies or antigen-binding fragments thereof). Levels of IL23 pathway biomarkers above or below a predetermined threshold can be used, for example, (i) to determine whether a patient with an IL23-mediated disease or disorder such a Crohn's disease is eligible or non-eligible for treatment with a therapeutic agent (e.g., an ant-IL23 antibody), (ii) to determine whether treatment with a certain agent should be commenced, suspended, or modified, (iii) to diagnose whether the IL23-mediated disease is treatable or not treatable with a specific therapeutic agent, or (iv) to predict the outcome of treating the IL23-mediated disease with a specific therapeutic agent.
    Type: Application
    Filed: September 16, 2016
    Publication date: September 6, 2018
    Inventors: Robert W. Georgantas, III, Chris Morehouse, Brandon Higgs, Koustubh Ranade, Katie Streicher, William Rees, Meina Liang, Raffaella Faggioni, Jing Li, Inna Vainshtein, Yen-Wah Lee, Jingjing Chen, Robert A. Grasser, JR.
  • Publication number: 20180196065
    Abstract: This disclosure provides a robust, sensitive, and specific assay for the detection and measurement of periostin levels in samples obtained from human patients having, or suspected of having an IL-13-mediated disease or disorder. The disclosure further provides novel antiperiostin monoclonal antibodies that recognize at least isoforms 1, 2, 3, 4, 7, and 8 of human periostin, and assay kits comprising one or more of these antibodies.
    Type: Application
    Filed: February 5, 2015
    Publication date: July 12, 2018
    Inventors: Partha Chowdhury, Reena Varkey, Meina Liang, Yen-Wah Lee, Katie Streicher, Koustubh Ranade, Ethan Grant, Lydia Greenlees, Yihong Yao, Melissa Parker, Gerard Davis, Nicolette Jeanblanc, Susan Brophy, Bruce Dille
  • Publication number: 20180179272
    Abstract: This disclosure provides a robust, sensitive, and specific assay for the detection and measurement of periostin levels in samples obtained from human patients having, or suspected of having an IL-13-mediated disease or disorder. The disclosure further provides novel antiperiostin monoclonal antibodies that recognize at least isoforms 1, 2, 3, 4, 7, and 8 of human periostin, and assay kits comprising one or more of these antibodies.
    Type: Application
    Filed: November 22, 2017
    Publication date: June 28, 2018
    Inventors: Partha Chowdhury, Reena Varkey, Meina Liang, Yen-Wah Lee, Katie Streicher, Koustubh Ranade, Ethan Grant, Lydia Greenlees, Yihong Yao, Melissa Parker
  • Patent number: 10006026
    Abstract: Disclosed herein is a method for producing a recombinant polypeptide in a mammalian cell culture in which the mammalian cells have a modified microRNA activity level. In one embodiment, a microRNA activity level is increased. In another embodiment, a microRNA activity level is decreased. In a more particular embodiment, the mammalian cells have a reduced miRNA-let-7a activity level.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: June 26, 2018
    Assignee: MedImmune, LLC
    Inventors: Katie Streicher, Jonathan Jacobs, Robert W. Georgantas, III, Lydia Greenlees, Koustubh Ranade, Michael Bowen