Patents by Inventor Kozo Hirokawa

Kozo Hirokawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9708586
    Abstract: This invention provides an amadoriase having high substrate specificity to fructosyl valyl histidine. Such amadoriase comprises substitution of one or more amino acid residues at positions corresponding to amino acids selected from the group consisting of position 98, position 259, position 154, position 125, position 261, position 263, position 106, position 103, position 355, position 96, position 66, position 67, position 70, position 100, position 110, position 113, position 114, and position 156 in the amadoriase derived from the genus Coniochaeta. This invention enables accurate measurement of ?-fructosyl valyl histidine derived from the ?-chain amino terminus in glycated hemoglobin in the presence of ?-fructosyl lysine.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: July 18, 2017
    Assignee: Kikkoman Corporation
    Inventors: Atsushi Ichiyanagi, Kozo Hirokawa, Yasuko Tanabe, Yosuke Masakari
  • Patent number: 9493814
    Abstract: A flavin-binding glucose dehydrogenase having high substrate specificity for D-glucose and decreased reactivity to D-xylose and/or maltose. More specifically, a flavin-binding glucose dehydrogenase having one or more amino acid substitutions at a position corresponding to position 78, position 79, position 81, position 121, position 122, position 123, position 569 and position 612 of Mucor-derived flavin-binding glucose dehydrogenase. The flavin-binding glucose dehydrogenase enables D-glucose to be measured accurately without being susceptible to the effects of the presence of D-xylose and/or maltose, even under conditions of mounting a large amount of an enzyme such as in glucose sensors.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: November 15, 2016
    Assignee: KIKKOMAN CORPORATION
    Inventors: Yasuko Araki, Atsushi Ichiyanagi, Keiichi Ichikawa, Kozo Hirokawa
  • Patent number: 9469844
    Abstract: A heat-resistant flavin-bound glucose dehydrogenase having a high substrate specificity for D-glucose, an method for producing the same, and a transformant used for the same. A flavin-bound glucose dehydrogenase gene encoding a flavin-bound glucose dehydrogenase derived from Mucor is introduced into yeast, Zygosaccharomyces, to obtain a transformant. Subsequently, the yeast transformant is cultured to obtain a flavin-bound glucose dehydrogenase from the culture. The heat-resistant flavin-bound glucose dehydrogenase is less susceptible to the effects of dissolved oxygen and allows accurate measurement of glucose even in the presence of sugar compounds other than glucose in a sample.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: October 18, 2016
    Assignee: KIKKOMAN CORPORATION
    Inventors: Ryoko Tajima, Atsushi Ichiyanagi, Kozo Hirokawa, Masanobu Yuzuki
  • Patent number: 9238802
    Abstract: A flavin-bound glucose dehydrogenase (FAD-GDH) with high substrate specificity for D-glucose. A gene encoding a mutant FAD-GDH with its N-terminal region, containing an amino acid sequence corresponding to MKITAAIITVATAFASFASA that exists in the N-terminal region, deleted from the amino acid sequence of a wild-type FAD-GDH derived from Mucor is introduced into E. coli to obtain an E. coli transformant. Subsequently, this E. coli transformant is cultured to obtain an FAD-GDH with a specific N-terminal region deleted. The transformant allows the production of a large amount of GDH in a short time as compared with the original microorganism. An FAD-GDH that is less susceptible to the effects of dissolved oxygen and allows accurate measurement of glucose even in the presence of sugar compounds other than glucose in a sample.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: January 19, 2016
    Assignee: KIKKOMAN CORPORATION
    Inventors: Ryoko Tajima, Atsushi Ichiyanagi, Eriko Yoshihara, Kozo Hirokawa
  • Publication number: 20150247129
    Abstract: This invention provides an amadoriase having high substrate specificity to fructosyl valyl histidine. Such amadoriase comprises substitution of one or more amino acid residues at positions corresponding to amino acids selected from the group consisting of position 98, position 259, position 154, position 125, position 261, position 263, position 106, position 103, position 355, position 96, position 66, position 67, position 70, position 100, position 110, position 113, position 114, and position 156 in the amadoriase derived from the genus Coniochaeta. This invention enables accurate measurement of ?-fructosyl valyl histidine derived from the ?-chain amino terminus in glycated hemoglobin in the presence of ?-fructosyl lysine.
    Type: Application
    Filed: May 19, 2015
    Publication date: September 3, 2015
    Applicant: Kikkoman Corporation
    Inventors: Atsushi Ichiyanagi, Kozo Hirokawa, Yasuko Tanabe, Yosuke Masakari
  • Patent number: 9074239
    Abstract: A flavin-binding glucose dehydrogenase (FAD-GDH), which in addition to having high substrate specificity and adequate desirable heat stability, is suitable for efficient production, preferably using E. coli, yeast or molds and the like as host cells. The FAD-GDH has amino acid substitutions at positions equivalent to one or more locations selected from the group consisting of position 213, position 368 and position 526 in the amino acid sequence described in SEQ ID NO: 8. The FAD-GDH is acquired from a culture by inserting a gene encoding the FAD-GDH into host cells such as E. coli. A preferable example of the FAD-GDH is FAD-GDH, in which a signal peptide region present in an N-terminal region has been deleted from the amino acid sequence of Mucor-derived FAD-GDH, and which has the aforementioned amino acid substitutions. The FAD-GDH can be preferably used in clinical diagnosis.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: July 7, 2015
    Assignee: KIKKOMAN CORPORATION
    Inventors: Ryoko Tajima, Kozo Hirokawa, Eriko Yoshihara, Yasuko Tanabe
  • Patent number: 9062286
    Abstract: This invention provides an amadoriase having high substrate specificity to fructosyl valyl histidine. Such amadoriase comprises substitution of one or more amino acid residues at positions corresponding to amino acids selected from the group consisting of position 98, position 259, position 154, position 125, position 261, position 263, position 106, position 103, position 355, position 96, position 66, position 67, position 70, position 100, position 110, position 113, position 114, and position 156 in the amadoriase derived from the genus Coniochaeta. This invention enables accurate measurement of ?-fructosyl valyl histidine derived from the ?-chain amino terminus in glycated hemoglobin in the presence of ?-fructosyl lysine.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: June 23, 2015
    Assignee: Kikkoman Corporation
    Inventors: Atsushi Ichiyanagi, Kozo Hirokawa, Yasuko Tanabe, Yosuke Masakari
  • Publication number: 20140302542
    Abstract: A flavin-binding glucose dehydrogenase having high substrate specificity for D-glucose and decreased reactivity to D-xylose and/or maltose. More specifically, a flavin-binding glucose dehydrogenase having one or more amino acid substitutions at a position corresponding to position 78, position 79, position 81, position 121, position 122, position 123, position 569 and position 612 of Mucor-derived flavin-binding glucose dehydrogenase. The flavin-binding glucose dehydrogenase enables D-glucose to be measured accurately without being susceptible to the effects of the presence of D-xylose and/or maltose, even under conditions of mounting a large amount of an enzyme such as in glucose sensors.
    Type: Application
    Filed: November 1, 2012
    Publication date: October 9, 2014
    Applicant: KIKKOMAN CORPORATION
    Inventors: Yasuko Araki, Atsushi Ichiyanagi, Keiichi Ichikawa, Kozo Hirokawa
  • Publication number: 20140287445
    Abstract: A flavin-binding glucose dehydrogenase (FAD-GDH), which in addition to having high substrate specificity and adequate desirable heat stability, is suitable for efficient production, preferably using E. coli, yeast or molds and the like as host cells. The FAD-GDH has amino acid substitutions at positions equivalent to one or more locations selected from the group consisting of position 213, position 368 and position 526 in the amino acid sequence described in SEQ ID NO: 8. The FAD-GDH is acquired from a culture by inserting a gene encoding the FAD-GDH into host cells such as E. coli. A preferable example of the FAD-GDH is FAD-GDH, in which a signal peptide region present in an N-terminal region has been deleted from the amino acid sequence of Mucor-derived FAD-GDH, and which has the aforementioned amino acid substitutions. The FAD-GDH can be preferably used in clinical diagnosis.
    Type: Application
    Filed: June 6, 2012
    Publication date: September 25, 2014
    Inventors: Ryoko Tajima, Kozo Hirokawa, Eriko Yoshihara, Yasuko Tanabe
  • Patent number: 8828699
    Abstract: Disclosed are: a eukaryotic amadoriase which is prepared by introducing a mutation into DNA encoding a eukaryotic amadoriase derived from a microorganism belonging to the genus Coniochaeta or Eupenicillium so as to introduce a substitution into a specific amino acid residue in the eukaryotic amadoriase, thereby overcoming the defect associated with thermal stability; a gene or recombinant DNA for the eukaryotic amadoriase; and a process for production of a eukaryotic amadoriase having excellent thermal stability.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: September 9, 2014
    Assignee: Kikkoman Corporation
    Inventors: Kozo Hirokawa, Atsushi Ichiyanagi
  • Publication number: 20140057331
    Abstract: A heat-resistant flavin-bound glucose dehydrogenase having a high substrate specificity for D-glucose, an method for producing the same, and a transformant used for the same. A flavin-bound glucose dehydrogenase gene encoding a flavin-bound glucose dehydrogenase derived from Mucor is introduced into yeast, Zygosaccharomyces, to obtain a transformant. Subsequently, the yeast transformant is cultured to obtain a flavin-bound glucose dehydrogenase from the culture. The heat-resistant flavin-bound glucose dehydrogenase is less susceptible to the effects of dissolved oxygen and allows accurate measurement of glucose even in the presence of sugar compounds other than glucose in a sample.
    Type: Application
    Filed: November 30, 2011
    Publication date: February 27, 2014
    Applicant: Kikkoman Corporation
    Inventors: Ryoko Tajima, Atsushi Ichiyanagi, Kozo Hirokawa, Masanobu Yuzuki
  • Publication number: 20130309750
    Abstract: A flavin-bound glucose dehydrogenase (FAD-GDH) with high substrate specificity for D-glucose. A gene encoding a mutant FAD-GDH with its N-terminal region, containing an amino acid sequence corresponding to MKITAAIITVATAFASFASA that exists in the N-terminal region, deleted from the amino acid sequence of a wild-type FAD-GDH derived from Mucor is introduced into E. coli to obtain an E. coli transformant. Subsequently, this E. coli transformant is cultured to obtain an FAD-GDH with a specific N-terminal region deleted. The transformant allows the production of a large amount of GDH in a short time as compared with the original microorganism. An FAD-GDH that is less susceptible to the effects of dissolved oxygen and allows accurate measurement of glucose even in the presence of sugar compounds other than glucose in a sample.
    Type: Application
    Filed: November 30, 2011
    Publication date: November 21, 2013
    Inventors: Ryoko Tajima, Atsushi Ichiyanagi, Eriko Yoshihara, Kozo Hirokawa
  • Publication number: 20130267007
    Abstract: This invention provides an amadoriase having high substrate specificity to fructosyl valyl histidine. Such amadoriase comprises substitution of one or more amino acid residues at positions corresponding to amino acids selected from the group consisting of position 98, position 259, position 154, position 125, position 261, position 263, position 106, position 103, position 355, position 96, position 66, position 67, position 70, position 100, position 110, position 113, position 114, and position 156 in the amadoriase derived from the genus Coniochaeta. This invention enables accurate measurement of ?-fructosyl valyl histidine derived from the ?-chain amino terminus in glycated hemoglobin in the presence of ?-fructosyl lysine.
    Type: Application
    Filed: August 4, 2011
    Publication date: October 10, 2013
    Inventors: Atsushi Ichiyanagi, Kozo Hirokawa, Yasuko Tanabe, Yosuke Masakari
  • Patent number: 8507223
    Abstract: The present invention relates to a method for quantitative determination of an ?-glycated peptide in a sample, comprising causing protease to act on a whole blood and/or blood cell sample, causing an elimination reagent containing one or a plurality of types of ketoamine oxidase to act on the resultant, eliminating an ?-glycated amino acid, an ?-glycated amino acid, an ?-glycated peptide, or a combination thereof, and then determining the ?-glycated peptide in the sample using oxidase that acts on the ?-glycated peptide. The present invention also relates to an elimination reagent and a kit to be used for such method. According to the present invention, measurement errors in quantitative determination of a glycated protein such as glycated hemoglobin can be reduced, and thus a precise measured value can be obtained.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: August 13, 2013
    Assignee: Kikkoman Corporation
    Inventors: Kozo Hirokawa, Kazuhiko Shimoji
  • Patent number: 8003359
    Abstract: Disclosed are: a eukaryotic amadoriase which is prepared by introducing a mutation into DNA encoding a eukaryotic amadoriase derived from a microorganism belonging to the genus Coniochaeta or Eupenicillium so as to introduce a substitution into a specific amino acid residue in the eukaryotic amadoriase, thereby overcoming the defect associated with thermal stability; a gene or recombinant DNA for the eukaryotic amadoriase; and a process for production of a eukaryotic amadoriase having excellent thermal stability.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: August 23, 2011
    Assignee: Kikkoman Corporation
    Inventors: Kozo Hirokawa, Atsushi Ichiyanagi
  • Publication number: 20110136202
    Abstract: Disclosed are: a eukaryotic amadoriase which is prepared by introducing a mutation into DNA encoding a eukaryotic amadoriase derived from a microorganism belonging to the genus Coniochaeta or Eupenicillium so as to introduce a substitution into a specific amino acid residue in the eukaryotic amadoriase, thereby overcoming the defect associated with thermal stability; a gene or recombinant DNA for the eukaryotic amadoriase; and a process for production of a eukaryotic amadoriase having excellent thermal stability.
    Type: Application
    Filed: February 14, 2011
    Publication date: June 9, 2011
    Applicant: KIKKOMAN CORPORATION
    Inventors: Kozo HIROKAWA, Atsushi ICHIYANAGI
  • Publication number: 20110003361
    Abstract: The present invention has an object of providing a novel fructosyl peptide oxidase having superior physicochemical properties such as stability that is useful as an enzyme for clinical diagnosis, and an object of providing a method for producing the fructosyl peptide oxidase. A novel fructosyl peptide oxidase having physicochemical properties useful as an enzyme for clinical diagnosis, and a method for producing a novel fructosyl peptide oxidase are provided herein, the method comprising: culturing a microorganism capable of producing the oxidase in a medium; and collecting the oxidase from the culture. Furthermore, a fructosyl peptide oxidase gene coding for a novel fructosyl peptide oxidase, recombinant DNA wherein the gene is inserted into vector DNA, and a method for producing a novel fructosyl peptide oxidase are provided herein, the method comprising: culturing, in a medium, a transformant or a transductant including the gene; and collecting the novel fructosyl peptide oxidase from the culture.
    Type: Application
    Filed: July 29, 2010
    Publication date: January 6, 2011
    Applicant: Kikkoman Corporation
    Inventors: Keiko KUROSAWA, Kozo Hirokawa, Naoki Kajiyama
  • Publication number: 20100291623
    Abstract: The present invention relates to a method for producing ?-glycated dipeptide, which comprises causing protease to act on N-terminal-glycated peptide or N-terminal-glycated protein. The present invention further relates to a method for determining the amount of ?-glycated dipeptide, which comprises causing a fructosyl peptide oxidase to act on the ?-glycated dipeptide obtained by the above method and then determining the amount of the thus generated hydrogen peroxide. According to the present invention, a method for producing ?-glycated dipeptide is provided, which enables the simple, rapid, and efficient production of ?-glycated dipeptide from glycated protein or glycated peptide. Furthermore, according to the present invention, a method for determining the amount of ?-glycated dipeptide is provided, which enables to determine the amount of ?-glycated dipeptide in a highly precise manner within a short time period.
    Type: Application
    Filed: May 24, 2010
    Publication date: November 18, 2010
    Applicant: Kikkoman Corporation
    Inventors: Kozo HIROKAWA, Keiko Kurosawa, Naoki Kajiyama
  • Publication number: 20090239239
    Abstract: Disclosed are: a eukaryotic amadoriase which is prepared by introducing a mutation into DNA encoding a eukaryotic amadoriase derived from a microorganism belonging to the genus Coniochaeta or Eupenicillium so as to introduce a substitution into a specific amino acid residue in the eukaryotic amadoriase, thereby overcoming the defect associated with thermal stability; a gene or recombinant DNA for the eukaryotic amadoriase; and a process for production of a eukaryotic amadoriase having excellent thermal stability.
    Type: Application
    Filed: April 17, 2007
    Publication date: September 24, 2009
    Inventors: Kozo Hirokawa, Atsushi Ichiyanagi
  • Publication number: 20090011467
    Abstract: The present invention has an object of providing a novel fructosyl peptide oxidase having superior physicochemical properties such as stability that is useful as an enzyme for clinical diagnosis, and an object of providing a method for producing the fructosyl peptide oxidase. A novel fructosyl peptide oxidase having physicochemical properties useful as an enzyme for clinical diagnosis, and a method for producing a novel fructosyl peptide oxidase are provided herein, the method comprising: culturing a microorganism capable of producing the oxidase in a medium; and collecting the oxidase from the culture. Furthermore, a fructosyl peptide oxidase gene coding for a novel fructosyl peptide oxidase, recombinant DNA wherein the gene is inserted into vector DNA, and a method for producing a novel fructosyl peptide oxidase are provided herein, the method comprising: culturing, in a medium, a transformant or a transductant including the gene; and collecting the novel fructosyl peptide oxidase from the culture.
    Type: Application
    Filed: July 28, 2008
    Publication date: January 8, 2009
    Applicant: Kikkoman Corporation
    Inventors: Keiko Kurosawa, Kozo Hirokawa, Naoki Kajiyama