Patents by Inventor Kozo Kitamura

Kozo Kitamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140321060
    Abstract: An inexpensive Cu-diamond based composite material having excellent heat conductivity and heat resistance. Conventionally, an infiltration method does not provide a Cu-diamond based composite material having high heat conductivity; an ultrahigh pressure method is expensive; and electric current pressure sintering provides relatively high heat conductivity, a low cost, but insufficient heat resistance. A Cu-diamond based solid phase sintered body contains 2 vol % or more and 6 vol % or less of Cr, and 30 vol % or more and 80 vol % or less of diamond particles containing 20 vol % or more of a high crystallinity diamond component.
    Type: Application
    Filed: April 9, 2014
    Publication date: October 30, 2014
    Applicant: FUJI DIE CO., LTD.
    Inventors: Masayuki Ishii, Saki Suzuki, Kozo Kitamura, Kazuhiko Tsuchiya, Minoru Saito, Osamu Terada, Koji Hayashi
  • Patent number: 8765272
    Abstract: A cermet has a hard phase which contains W and nitrogen, and includes at least one selected from a carbide, nitride and carbonitride of a metal having Ti as a main component, and a binder phase having an iron group metal as a main component. A W amount contained in the whole cermet is 5 to 40% by weight, an interfacial phase including a complex carbonitride with a larger W amount than a W amount of the hard phase being present between grains of the hard phase, and when a W amount contained in the interfacial phase based on the whole metal element is represented by Wb (atomic %), and a W amount contained in the hard phase based on the whole metal element is represented by Wh (atomic %), then, an atomic ratio of Wb to Wh (Wb/Wh) is 1.7 or more. The cermet is excellent in fracture resistance and wear resistance.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: July 1, 2014
    Assignee: Tungaloy Corporation
    Inventors: Keitaro Tamura, Daisuke Takesawa, Hiroki Hara, Kozo Kitamura, Yasuro Taniguchi, Koji Hayashi, Akihiro Matsumoto, Sung-Pyo Cho
  • Publication number: 20130287625
    Abstract: Provided is a high hardness ultra-fine cemented carbide with a Ni binder phase for a wear resistant tool. An ultra-fine cemented carbide having high specularity and/or high strength, high hardness, and high wear resistance is obtained by using an ultra-fine raw powder of WC, controlling the amount of Ni, and the contents of V and Cr, so that a third phase containing V and Cr precipitates in a microstructure of the cemented carbide in a finely dispersed state, and at the same time, the size of Ni pool is controlled to a value equal to or less than the average grain size of WC. By using this cemented carbide, the range of application to an aspherical glass lens mold, an ultrahigh pressure generation container for neutron diffraction experiment, a non-ferromagnetic corrosion resistant and wear resistant tool, and the like is expanded.
    Type: Application
    Filed: October 22, 2012
    Publication date: October 31, 2013
    Inventors: Kouhei WADA, Takahiro FUKUSHIMA, Masaru KAWAKAMI, Minoru SAITO, Kozo KITAMURA, Koji HAYASHI
  • Publication number: 20120114960
    Abstract: A cermet has a WC first hard phase, a second hard phase including one or more of a carbide, nitride and carbonitride of an element(s) of groups 4, 5 and 6 of the Periodic Table including a titanium element, and a mutual solid solution thereof, and a binder phase. In the cermet, a carbon amount CT (% by weight), a tungsten amount CW (% by weight), and a nitrogen amount CN (% by weight) satisfy 0.25<(CN/(CT?0.0653·CW))<6. The cermet has a surface region with a thickness of 5 to 100 ?m which includes the first hard phase and the binder phase, and an inner region which includes the first and second hard phases and the binder phase. In a cross-section of the inner region, a ratio of an area of the first hard phase to an area of the second hard phase is 0.15 to 4.
    Type: Application
    Filed: June 30, 2010
    Publication date: May 10, 2012
    Applicant: Tungaloy Corporation
    Inventors: Daisuke Takesawa, Keitaro Tamura, Hiroki Hara, Kozo Kitamura, Yasuro Taniguchi, Koji Hayashi
  • Publication number: 20120003466
    Abstract: A cermet has a hard phase which contains W and nitrogen, and includes at least one selected from a carbide, nitride and carbonitride of a metal having Ti as a main component, and a binder phase having an iron group metal as a main component. A W amount contained in the whole cermet is 5 to 40% by weight, an interfacial phase including a complex carbonitride with a larger W amount than a W amount of the hard phase being present between grains of the hard phase, and when a W amount contained in the interfacial phase based on the whole metal element is represented by Wb (atomic %), and a W amount contained in the hard phase based on the whole metal element is represented by Wh (atomic %), then, an atomic ratio of Wb to Wh (Wb/Wh) is 1.7 or more. The cermet is excellent in fracture resistance and wear resistance.
    Type: Application
    Filed: March 10, 2010
    Publication date: January 5, 2012
    Applicant: TUNGALOY CORPORATION
    Inventors: Keitaro Tamura, Daisuke Takesawa, Hiroki Hara, Kozo Kitamura, Yasuro Taniguchi, Koji Hayashi, Akihiro Matsumoto, Sung-Pyo Cho
  • Publication number: 20110117368
    Abstract: A hard powder contains much amount of a complex carbonitride solid solution, which can improve sinterability of a sintered hard alloy and give a uniform structure. The hard powder is a powder containing 90 vol % or more of a complex carbonitride solid solution represented by (Ti1-x,Mx)(C1-y,Ny), wherein M represents at least one element selected from the group consisting of W, Mo, Nb, Zr and Ta, x represents an atomic ratio of M based on the sum of Ti and M, y represents an atomic ratio of N based on the sum of C and N, x and y satisfy 0.05?x?0.5 and 0.01?y?0.75.
    Type: Application
    Filed: July 15, 2009
    Publication date: May 19, 2011
    Inventors: Hideaki Matsubara, Mineaki Matsumoto, Hiroshi Nomura, Yasuro Taniguchi, Kozo Kitamura, Hiroki Hara, Keitaro Tamura, Daisuke Takesawa
  • Publication number: 20010053246
    Abstract: The discriminability of character data that is displayed on a screen is improved by performing a color conversion on the character data. More specifically, a color conversion system is provided which comprises: extraction means for extracting character data including color data; conversion means for converting the extracted color data based on a predetermined color conversion rule; and output means for outputting the character data and the obtained color data to the application. The color conversion rule for this invention is set in advance so as to attain a specific objective (e.g., to enable a color-blind user to easily identify displayed characters). A single color conversion process and/or a process that provides the sequential conversion of multiple character colors at a constant time interval may be used.
    Type: Application
    Filed: November 29, 2000
    Publication date: December 20, 2001
    Inventors: Yoshihiro Tachibana, Kozo Kitamura
  • Patent number: 5993506
    Abstract: Disclosed are a plate-crystalline tungsten carbide-containing hard alloy which comprises 4 to 40% by volume of a binder phase containing at least one of iron group metals selected from Co, Ni and Fe as a main component; and the balance of a hard phase comprising tungsten carbide alone, or tungsten carbide and 50% by volume or less of a compound with a cubic structure selected from at least one of carbide and nitride of the 4a (Ti, Zr and Hf), 5a (V, Nb and Ta) or 6a (Cr, Mo and W) group element of the periodic table and mutual solid solutions thereof, and inevitable impurities,wherein when peak intensities at a (001) face and a (101) face in X-ray diffraction using K.alpha. rays with Cu being a target are represented by h(001) and h(101), respectively, the tungsten carbide satisfies h(001)/h(101) .gtoreq.0.50, a composition for forming a plate-crystalline tungsten carbide, and a process for preparing the plate-crystalline tungsten carbide-containing hard alloy.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: November 30, 1999
    Assignee: Toshiba Tungaloy Co., Ltd.
    Inventors: Masaki Kobayashi, Kozo Kitamura, Satoshi Kinoshita
  • Patent number: 5919968
    Abstract: A process for preparing an organic pentavalent phosphorus compound comprising oxidizing an organic trivalent phosphorus compound with an aqueous hydrogen peroxide solution in the presence of an inorganic or organic base at a temperature of 0.degree. C. to 50.degree. C. to obtain the corresponding organic pentavalent phosphorus compound.
    Type: Grant
    Filed: November 10, 1997
    Date of Patent: July 6, 1999
    Assignee: Daihachi Chemical Industry Co., Ltd.
    Inventors: Kozo Kitamura, Tsuyoshi Kihara, Yoshinori Tanaka, Yoshimi Yano
  • Patent number: 5918103
    Abstract: Disclosed are a plate-crystalline tungsten carbide-containing hard alloy which comprises 4 to 40% by volume of a binder phase containing at least one of iron group metals selected from Co, Ni and Fe as a main component; and the balance of a hard phase comprising tungsten carbide alone, or tungsten carbide and 50% by volume or less of a compound with a cubic structure selected from at least one of carbide and nitride of the 4a (Ti, Zr and Hf), 5a (V, Nb and Ta) or 6a (Cr, Mo and W) group element of the periodic table and mutual solid solutions thereof, and inevitable impurities,wherein when peak intensities at a (001) face and a (101) face in X-ray diffraction using K.alpha. rays with Cu being a target are represented by h(001) and h(101), respectively, the tungsten carbide satisfies h(001)/h(101).gtoreq.0.50, a composition for forming a plate-crystalline tungsten carbide, and a process for preparing the plate-crystalline tungsten carbide-containing hard alloy.
    Type: Grant
    Filed: August 6, 1996
    Date of Patent: June 29, 1999
    Assignee: Toshiba Tungaloy Co., Ltd.
    Inventors: Masaki Kobayashi, Kozo Kitamura, Satoshi Kinoshita
  • Patent number: 5426711
    Abstract: An online handwritten character recognition system which performs the narrowing of candidates for handwritten character recognition quickly and very accurately by simple processing of a small amount of operations. A predetermined characteristic amount is extracted for each stroke, a characteristic amount word is created having a binary value of 1 only in one or more bit positions corresponding to selected values of the characteristic amount, an AND operation is performed bit-by-bit between the reference word of the corresponding stroke of the character of interest, and it is determined if all the bits of the results of the AND operation are zero. If the number of binary values of the results of the zero-determining operation for all the strokes of the character of interest exceeds a threshold, it is judged to be a candidate.
    Type: Grant
    Filed: October 6, 1992
    Date of Patent: June 20, 1995
    Assignee: International Business Machines Corporation
    Inventor: Kozo Kitamura
  • Patent number: 5297245
    Abstract: A data input system useful in a data base such as an address data management system. This data input system can reduce the number of key operation and the possibility of erroneously inputting data. This system comprises: a display for displaying input data; a first memory for storing data displayed on the display, a second memory for temporarily storing the displayed data; and a control unit for displaying the data stored in the second memory.
    Type: Grant
    Filed: March 27, 1992
    Date of Patent: March 22, 1994
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kozo Kitamura, Junji Tanaka, Masaaki Kurata, Kiyoshi Kakuda, Kenji Hirano, Hirofumi Yanaru
  • Patent number: 5145505
    Abstract: Disclosed are a high toughness cermet comprising a sintered alloy comprising 75 to 95% by weight of a hard phase of carbide, nitride or carbonitride containing Ti, at least one of W, Mo and Cr, and N and C, and the balance of a binder phase composed mainly of an iron group metal, and inevitable impurities,wherein the content of Ti in said sintered alloy is 35 to 85% by weight calculated on TiN or TiN and TiC, and the contents of W, Mo and Cr are 10 to 40% by weight in total calculated on WC, Mo.sub.2 C and/or Cr.sub.3 C.sub.2,the relative concentration of said binder phase at the 0.01 mm-inner portion from the surface of said sintered alloy is 5 to 50% of the average binder phase concentration of the inner portion, and the relative concentration of said binder phase at the 0.1 mm-inner portion from the surface of said sintered alloy is 70 to 100% of the average binder phase concentration of the inner portion, anda compression stress of 30 kgf/mm.sup.
    Type: Grant
    Filed: February 7, 1992
    Date of Patent: September 8, 1992
    Assignee: Toshiba Tungaloy Co., Ltd.
    Inventors: Takeshi Saito, Kozo Kitamura, Mitsuo Ueki
  • Patent number: 4985070
    Abstract: There are disclosed a high strength nitrogen-containing cermet which comprises 7 to 20% by weight of a binder phase composed mainly of Co and/or Ni, with the balance being a hard phase composed mainly of TiC, TiN and/or Ti(C,N) and inevitable impurities, wherein the hard phase comprises 35 to 59% by weight of Ti, 9 to 29% by weight of W, 0.4 to 3.5% by weight of Mo, 4 to 24% by weight of at least one of Ta, Nb, V and Zr, 5.5 to 9.5% by weight of N and 4.5 to 12% by weight of C; and a process for preparing the same which comprises via the formulating, mixing, drying, molding and sintering steps of Co and/or Ni powder, at least one powder of TiC, Ti(C,N) and TiN, WC powder, Mo and/or Mo.sub.2 C, and at least one powder of carbides of Ta, Nb, V and Zr, wherein the sintering step is carried out by elevating the temperature up to 1350.degree. C. in vacuum, with the nitrogen atmosphere being made 1 torr at 1350.degree. C.
    Type: Grant
    Filed: July 21, 1989
    Date of Patent: January 15, 1991
    Assignee: Toshiba Tungaloy Co., Ltd.
    Inventors: Kozo Kitamura, Takeshi Saitoh, Mitsuo Ueki, Keiichi Kobori
  • Patent number: 4633432
    Abstract: A word processing apparatus includes a random access memory for temporarily storing the document data, and a floppy disc for permanently memorizing the document data. A character number counter is included in the word processing apparatus, which develops a control signal when, for example, 100 stroke key input operation is conducted through a keyboard panel. In response to the control signal, the document data temporarily stored in the random access memory is transferred to the floppy disc for updating the document data memorized in the floppy disc.
    Type: Grant
    Filed: August 19, 1985
    Date of Patent: December 30, 1986
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Kozo Kitamura
  • Patent number: 3983577
    Abstract: The data processing terminal unit in the form of a point of sale transaction device disclosed herein contains a keyboard for introducing data into the data processing terminal unit and a cassette tape deck which includes a cassette type magnetic tape and a cassette tape recording scheme for data storage. There are provided an E key and an M key on the keyboard for introducing end marking signals (EM signals) which indicates completion of data entry. The EM signals are introduced into the data processing terminal unit when the E key and the M key are depressed successively or simultaneously, thereby preventing erroneous introduction of the EM signals at an undesired time.
    Type: Grant
    Filed: August 27, 1974
    Date of Patent: September 28, 1976
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Youichi Ito, Kozo Kitamura