Patents by Inventor Kozo Osada

Kozo Osada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11827972
    Abstract: An object of the present invention is to provide an IGZO sputtering target capable of improving uniformity for at least one property selected from the number of microcracks in the structure, the number of pores in the sintered body structure, and surface roughness. The IGZO sputtering target according to the present invention has an oxide sintered body, the oxide sintered body comprising indium (In), gallium (Ga), zinc (Zn) and unavoidable impurities, wherein, on a surface of the oxide sintered body, a lightness difference ?L* satisfies ?L*<3.0, in which the ?L* is obtained by subtracting lightness Lc*at a central portion on the surface from lightness Le* at a position of 10 mm from an end portion to the central portion side on the surface, and wherein the oxide sintered body has a relative density of 97.0% or more.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: November 28, 2023
    Assignee: JX Metals Corporation
    Inventors: Yuhei Kuwana, Kozo Osada, Jun Kajiyama, Kazutaka Murai
  • Publication number: 20220220605
    Abstract: An object of the present invention is to provide an IGZO sputtering target capable of improving uniformity for at least one property selected from the number of microcracks in the structure, the number of pores in the sintered body structure, and surface roughness. The IGZO sputtering target according to the present invention has an oxide sintered body, the oxide sintered body comprising indium (In), gallium (Ga), zinc (Zn) and unavoidable impurities, wherein, on a surface of the oxide sintered body, a lightness difference ?L* satisfies ?L*<3.0, in which the ?L* is obtained by subtracting lightness Lc*at a central portion on the surface from lightness Le* at a position of 10 mm from an end portion to the central portion side on the surface, and wherein the oxide sintered body has a relative density of 97.0% or more.
    Type: Application
    Filed: December 28, 2021
    Publication date: July 14, 2022
    Inventors: Yuhei Kuwana, Kozo Osada, Jun Kajiyama, Kazutaka Murai
  • Publication number: 20180277342
    Abstract: Provided is a sputtering target that can ensure a required thickness of a bonding material and improve the quality, even if the backing tube is curved and deformed in the axial direction; and a method for producing the same. A sputtering target according to the present invention comprises a target material made of a ceramic material and comprising a plurality of cylindrical target segments arranged side by side at an interval of from 0.15 mm to 0.50 mm in the axial direction; a cylindrical backing tube arranged on the inner peripheral side of the target material; and a bonding material interposed between the target material and the backing tube to bond the target material to the backing tube, wherein a quantity of step difference between outer end edges adjacent to each other in the axial direction on the respective outer peripheral surfaces of at least a pair of target segments adjacent to each other in the axial direction is 0.
    Type: Application
    Filed: February 5, 2018
    Publication date: September 27, 2018
    Inventors: Kozo Osada, Yoshitaka Tsuruta, Satoru Tateno
  • Patent number: 9663405
    Abstract: An oxide sintered compact made of indium (In), gallium (Ga), zinc (Zn) and oxygen (O) and represented by a formula of InxGayZnzOa [wherein x/(x+y) is 0.2 to 0.8, z/(x+y+z) is 0.1 to 0.5, and a=(3/2)x+(3/2)y+z], wherein the concentration of volatile impurities contained in the oxide sintered compact is 20 ppm or less. Provided is technology for application to the production of an IGZO target capable of achieving high densification and low bulk resistance of the sputtering target, preventing swelling and cracks of the target during the production process, minimizing the generation of nodules, inhibiting abnormal discharge, and enabling DC sputtering.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: May 30, 2017
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Masakatsu Ikisawa, Masataka Yahagi, Kozo Osada, Takashi Kakeno, Hideo Takami
  • Patent number: 9224584
    Abstract: Provided is a sputtering target assembly comprising two or more sputtering target-backing plate bonded bodies B aligned in the width direction, wherein the sputtering target-backing plate bonded bodies B each include a cylindrical target having a diameter of 100 mm or more and a length of 1000 mm or more and composed of three or more target pieces A being divided such that the dividing lines lie in the circumferential direction and being bonded or placed onto a cylindrical or columnar backing plate, wherein the bonded bodies B are arranged to form the sputtering target assembly in such a manner that the dividing lines between the three target pieces of one bonded body B are not present at the same positions of the dividing lines between fractional target pieces of adjacent another bonded body B. It is an object of the present invention to provide a sputtering target assembly that can reduce defects due to occurrence of particles originated from the piece-bonding area.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: December 29, 2015
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Kozo Osada, Toshiya Kurihara
  • Patent number: 9045823
    Abstract: Provided is a sintered oxide compact target for sputtering comprising indium (In), gallium (Ga), zinc (Zn), oxygen (O) and unavoidable impurities, wherein the composition ratio of the respective elements satisfies the Formula of InxGayZnzOa {wherein 0.2?x/(x+y)?0.8, 0.1?z/(x+y+z)?0.5, a=(3/2)x+(3/2)y+z}, and the number of ZnGa2O4 spinel phases having a grain size of 3 ?m or larger existing in a 90 ?m×90 ?m area range of the sintered oxide compact target is 10 or less. With this sintered oxide compact target for sputtering comprising In, Ga, Zn, O and unavoidable impurities, the structure of the sintered compact target is improved, the formation of a phase to become the source of nodules is minimized, and the bulk resistance value is reduced. Whereby provided is a high density IGZO target capable of inhibiting abnormal discharge and which can be used in DC sputtering.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: June 2, 2015
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Kozo Osada, Hiroaki Ohtsuka
  • Publication number: 20140367252
    Abstract: Provided is a sputtering target assembly comprising two or more sputtering target-backing plate bonded bodies B aligned in the width direction, wherein the sputtering target-backing plate bonded bodies B each include a cylindrical target having a diameter of 100 mm or more and a length of 1000 mm or more and composed of three or more target pieces A being divided such that the dividing lines lie in the circumferential direction and being bonded or placed onto a cylindrical or columnar backing plate, wherein the bonded bodies B are arranged to form the sputtering target assembly in such a manner that the dividing lines between the three target pieces of one bonded body B are not present at the same positions of the dividing lines between fractional target pieces of adjacent another bonded body B. It is an object of the present invention to provide a sputtering target assembly that can reduce defects due to occurrence of particles originated from the piece-bonding area.
    Type: Application
    Filed: September 25, 2012
    Publication date: December 18, 2014
    Inventors: Kozo Osada, Toshiya Kurihara
  • Patent number: 8728358
    Abstract: An amorphous film comprising indium, tin, calcium and oxygen, wherein tin is contained at a ratio of 5 to 15% based on an atomicity ratio of Sn/(In+Sn+Ca) and calcium is contained at a ratio of 0.1 to 2.0% based on an atomicity ratio of Ca/(In+Sn+Ca), and remnant is indium and oxygen, is provided. The film can be crystallized by annealing at 260° C. or lower in which resistivity of the film will be 0.4 m?cm or less. In this manner, an ITO thin film for use as a display electrode or the like in a flat panel display can be made into an amorphous ITO film by way of sputter deposition without heating the substrate or adding water during deposition. This ITO film can be crystallized by annealing at a low temperature and will have low resistivity. Methods of producing such films and sintered compacts are provided.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: May 20, 2014
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Masakatsu Ikisawa, Masataka Yahagi, Kozo Osada, Takashi Kakeno
  • Publication number: 20120319057
    Abstract: An amorphous film comprising indium, tin, calcium and oxygen, wherein tin is contained at a ratio of 5 to 15% based on an atomicity ratio of Sn/(In+Sn+Ca) and calcium is contained at a ratio of 0.1 to 2.0% based on an atomicity ratio of Ca/(In+Sn+Ca), and remnant is indium and oxygen, is provided. The film can be crystallized by annealing at 260° C. or lower in which resistivity of the film will be 0.4 m?cm or less. In this manner, an ITO thin film for use as a display electrode or the like in a flat panel display can be made into an amorphous ITO film by way of sputter deposition without heating the substrate or adding water during deposition. This ITO film can be crystallized by annealing at a low temperature and will have low resistivity. Methods of producing such films and sintered compacts are provided.
    Type: Application
    Filed: August 23, 2012
    Publication date: December 20, 2012
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Masakatsu Ikisawa, Masataka Yahagi, Kozo Osada, Takashi Kakeno
  • Patent number: 8277694
    Abstract: Provided is an amorphous film substantially comprised of indium, tin, calcium and oxygen, wherein tin is contained at a ratio of 5 to 15% based on an atomicity ratio of Sn/(In+Sn+Ca) and calcium is contained at a ratio of 0.1 to 2.0% based on an atomicity ratio of Ca/(In+Sn+Ca), and remnant is indium and oxygen. The film can be further crystallized by annealing at a temperature of 260° C. or lower in which resistivity of the film will be 0.4 m?cm or less. An ITO thin film for use as a display electrode or the like in a flat panel display can be made into an amorphous ITO film by way of sputter deposition without heating the substrate or adding water during deposition. This ITO film is characterized in that it will crystallize by annealing at a temperature of 260° C. or less, which is not such a high temperature, and have low resistivity after being crystallized. Thus, the present invention aims to provide a method of producing such a film and a sintered compact for producing such a film.
    Type: Grant
    Filed: July 4, 2008
    Date of Patent: October 2, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Masakatsu Ikisawa, Masataka Yahagi, Kozo Osada, Takashi Kakeno
  • Patent number: 8252206
    Abstract: Provided is an amorphous film comprised substantially of indium, tin, magnesium and oxygen, and containing tin at a ratio of 5 to 15% based on an atomicity ratio of Sn/(In+Sn+Mg) and magnesium at a ratio of 0.1 to 2.0% based on an atomicity ratio of Mg/(In+Sn+Mg) with remnant being indium and oxygen, and having a film resistivity of 0.4 m?cm or less as a result of crystallizing the film by annealing the film at a temperature of 260° C. or lower. An amorphous ITO thin film for use as a display electrode and the like in flat panel displays is obtained by way of sputter deposition without heating the substrate and without the need of adding water during the deposition. This amorphous ITO film has the property of being crystallized by annealing at 260° C. or lower, which is not such a high temperature, and having low resistivity after crystallization. Also provided are a method of producing the film and a sintered compact for producing the film.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: August 28, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Masakatsu Ikisawa, Masataka Yahagi, Kozo Osada, Takashi Kakeno
  • Publication number: 20120103804
    Abstract: An oxide sintered compact made of indium (In), gallium (Ga), zinc (Zn) and oxygen (O) and represented by a formula of InxGayZnzOa [wherein x/(x+y) is 0.2 to 0.8, z/(x+y+z) is 0.1 to 0.5, and a=(3/2)x+(3/2)y+z], wherein the concentration of volatile impurities contained in the oxide sintered compact is 20 ppm or less. Provided is technology for application to the production of an IGZO target capable of achieving high densification and low bulk resistance of the sputtering target, preventing swelling and cracks of the target during the production process, minimizing the generation of nodules, inhibiting abnormal discharge, and enabling DC sputtering.
    Type: Application
    Filed: May 28, 2010
    Publication date: May 3, 2012
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Masakatsu Ikisawa, Masataka Yahagi, Kozo Osada, Takashi Kakeno, Hideo Takami
  • Publication number: 20100300878
    Abstract: Provided is a sintered oxide compact target for sputtering comprising indium (In), gallium (Ga), zinc (Zn), oxygen (O) and unavoidable impurities, wherein the composition ratio of the respective elements satisfies the Formula of InxGayZnzOa {wherein 0.2?x/(x+y)?0.8, 0.1?z/(x+y+z)?0.5, a=(3/2)x+(3/2)y+z}, and the number of ZnGa2O4 spinel phases having an average grain size of 3 ?m or larger existing in a 90 ?m×90 ?m area range of the sintered oxide compact target is 10 or less. With this sintered oxide compact target for sputtering comprising In, Ga, Zn, O and unavoidable impurities, the structure of the sintered compact target is improved, the formation of a phase to become the source of nodules is minimized, and the bulk resistance value is reduced. Whereby provided is a high density IGZO target capable of inhibiting abnormal discharge and which can be used in DC sputtering.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 2, 2010
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Kozo Osada, Hiroaki Ohtsuka
  • Publication number: 20100140570
    Abstract: Provided is an amorphous film substantially comprised of indium, tin, calcium and oxygen, wherein tin is contained at a ratio of 5 to 15% based on an atomicity ratio of Sn/(In+Sn+Ca) and calcium is contained at a ratio of 0.1 to 2.0% based on an atomicity ratio of Ca/(In+Sn+Ca), and remnant is indium and oxygen. The film can be further crystallized by annealing at a temperature of 260° C. or lower in which resistivity of the film will be 0.4 m?cm or less. An ITO thin film for use as a display electrode or the like in a flat panel display can be made into an amorphous ITO film by way of sputter deposition without heating the substrate or adding water during deposition. This ITO film is characterized in that it will crystallize by annealing at a temperature of 260° C. or less, which is not such a high temperature, and have low resistivity after being crystallized. Thus, the present invention aims to provide a method of producing such a film and a sintered compact for producing such a film.
    Type: Application
    Filed: July 4, 2008
    Publication date: June 10, 2010
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Masakatsu Ikisawa, Masataka Yahagi, Kozo Osada, Takashi Kakeno
  • Patent number: 7686985
    Abstract: Provided is a high density gallium oxide-zinc oxide series sintered body sputtering target for forming a transparent conductive film containing 20 to 500 mass ppm of aluminum oxide. In a gallium oxide (Ga2O3)-zinc oxide (ZnO) series sputtering target (GZO series target) for forming a transparent conductive film, trace amounts of specific elements are added to obtain a target capable of improving the conductivity and the bulk density of the target; in other words, capable of improving the component composition to increase the sintered density, inhibit the formation of nodules, and prevent the generation of an abnormal electrical discharge and particles. Also provided are a method for forming a transparent conductive film using such a target, and a transparent conductive film formed thereby.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: March 30, 2010
    Assignee: Nippon Mining & Metals Co., Ltd
    Inventor: Kozo Osada
  • Patent number: 7682529
    Abstract: Provided is a high density gallium oxide-zinc oxide series sintered body sputtering target for forming a transparent conductive film containing 20 to 2000 mass ppm of zirconium oxide. In a gallium oxide (Ga2O3)-zinc oxide (ZnO) series sputtering target (GZO series target) for forming a transparent conductive film, trace amounts of specific elements are added to obtain a target capable of improving the conductivity and the bulk density of the target; in other words, capable of improving the component composition to increase the sintered density, inhibit the formation of nodules, and prevent the generation of an abnormal electrical discharge and particles. Also provided are a method for forming a transparent conductive film using such a target, and a transparent conductive film formed thereby.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: March 23, 2010
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventor: Kozo Osada
  • Patent number: 7674404
    Abstract: Provided is a high-density gallium oxide/zinc oxide sintered sputtering target containing 20 massppm or greater of each zirconium oxide and aluminum oxide, wherein the total content thereof is less than 250 ppm. This gallium oxide (Ga2O3)/zinc oxide (ZnO) sputtering target (GZO target) improves the conductivity and bulk density of the target by adding trace amounts of specific elements. In other words, it is possible to obtain a target capable of increasing the sintered density, inhibiting the formation of nodules, and preventing the generation of abnormal electrical discharge and particles by improving the component composition. Further, provided are a method of forming a transparent conductive film with the use of the target, and a transparent conductive film formed thereby.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: March 9, 2010
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventor: Kozo Osada
  • Publication number: 20090250669
    Abstract: Provided is a high-density gallium oxide/zinc oxide sintered sputtering target containing 20 massppm or greater of each zirconium oxide and aluminum oxide, wherein the total content thereof is less than 250 ppm. This gallium oxide (Ga2O3)/zinc oxide (ZnO) sputtering target (GZO target) improves the conductivity and bulk density of the target by adding trace amounts of specific elements. In other words, it is possible to obtain a target capable of increasing the sintered density, inhibiting the formation of nodules, and preventing the generation of abnormal electrical discharge and particles by improving the component composition. Further, provided are a method of forming a transparent conductive film with the use of the target, and a transparent conductive film formed thereby.
    Type: Application
    Filed: November 17, 2006
    Publication date: October 8, 2009
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventor: Kozo Osada
  • Publication number: 20090206303
    Abstract: Provided is a high density gallium oxide-zinc oxide series sintered body sputtering target for forming a transparent conductive film containing 20 to 2000 mass ppm of zirconium oxide. In a gallium oxide (Ga2O3)-zinc oxide (ZnO) series sputtering target (GZO series target) for forming a transparent conductive film, trace amounts of specific elements are added to obtain a target capable of improving the conductivity and the bulk density of the target; in other words, capable of improving the component composition to increase the sintered density, inhibit the formation of nodules, and prevent the generation of an abnormal electrical discharge and particles. Also provided are a method for forming a transparent conductive film using such a target, and a transparent conductive film formed thereby.
    Type: Application
    Filed: June 6, 2006
    Publication date: August 20, 2009
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventor: Kozo Osada
  • Publication number: 20090120786
    Abstract: Provided is a high density gallium oxide-zinc oxide series sintered body sputtering target for forming a transparent conductive film containing 20 to 500 mass ppm of aluminum oxide, In a gallium oxide (Ga2O3)-zinc oxide (ZnO) series sputtering target (GZO series target) for forming a transparent conductive film, trace amounts of specific elements are added to obtain a target capable of improving the conductivity and the bulk density of the target; in other words, capable of improving the component composition to increase the sintered density, inhibit the formation of nodules, and prevent the generation of an abnormal electrical discharge and particles. Also provided are a method for forming a transparent conductive film using such a target, and a transparent conductive film formed thereby.
    Type: Application
    Filed: May 30, 2006
    Publication date: May 14, 2009
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventor: Kozo Osada