Patents by Inventor Krishan Pratap Jadaun

Krishan Pratap Jadaun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11898105
    Abstract: Hydrodeoxygenating a biorenewable feed that is concentrated in free fatty acids with 10-13 carbon atoms at a moderate hydrodeoxygenation ratio that is less than the ratio of hydrodeoxygenation utilized for traditional biorenewable feeds such as vegetable oil or even mineral feedstocks, normal paraffins in the range desired by the detergents industry can be produced. Either hydroisomerization or an iso-normal separation can be performed to provide green fuel streams. Two reactors are proposed, one for hydrodeoxygenation of the biorenewable feed that is concentrated in free fatty acids with 10-13 carbon atoms and the other for a traditional biorenewable feed or even a mineral feed operated at a higher deoxygenation ratio.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: February 13, 2024
    Assignee: UOP LLC
    Inventors: Krishan Pratap Jadaun, Andrea G. Bozzano, Krishna Mani, Stanley Joseph Frey
  • Publication number: 20230137687
    Abstract: Hydrodeoxygenating a biorenewable feed that is concentrated in free fatty acids with 10-13 carbon atoms at a moderate hydrodeoxygenation ratio that is less than the ratio of hydrodeoxygenation utilized for traditional biorenewable feeds such as vegetable oil or even mineral feedstocks, normal paraffins in the range desired by the detergents industry can be produced. Either hydroisomerization or an iso-normal separation can be performed to provide green fuel streams. Two reactors are proposed, one for hydrodeoxygenation of the biorenewable feed that is concentrated in free fatty acids with 10-13 carbon atoms and the other for a traditional biorenewable feed or even a mineral feed operated at a higher deoxygenation ratio.
    Type: Application
    Filed: October 28, 2021
    Publication date: May 4, 2023
    Inventors: Krishan Pratap Jadaun, Andrea G. Bozzano, Krishna Mani, Stanley Joseph Frey
  • Publication number: 20210403814
    Abstract: A process for hydrotreating a renewable feedstock with improved carbon monoxide management is disclosed. A mixture of renewable feedstock and hydrocarbon feedstock is treated in a hydrotreating reactor to produce a hydrotreated effluent stream and contacting the hydrotreated effluent stream with a water gas shift catalyst bed to produce a shift reactor effluent stream. The shift reactor effluent stream is passed to a cold separator to recover a cold vapor stream and recycling the cold vapor stream having reduced concentration of carbon monoxide to the hydrotreating zone. The subject matter disclosed provides an improved process and apparatus to reduce the accumulation of CO by converting CO present in the hydrotreated effluent stream to CO2 using the water shift gas reaction.
    Type: Application
    Filed: June 16, 2021
    Publication date: December 30, 2021
    Inventors: Krishan Pratap Jadaun, Hari S. Bajpai, Krishna Mani
  • Patent number: 11104855
    Abstract: Processes for co-processing a naphtha stream with a light cycle oil stream are disclosed. The processes include hydrocracking the light cycle oil stream under hydrocracking conditions to provide a hydrocracked effluent stream. A naphtha stream is hydrotreated under hydrotreating conditions to provide a hydrotreated effluent stream. The hydrocracked effluent stream and the hydrotreated effluent stream may be passed to a stripping column to recover a stripping bottom stream. The stripping bottom stream may be passed to a main fractionation column to recover an intermediate naphtha stream.
    Type: Grant
    Filed: August 31, 2019
    Date of Patent: August 31, 2021
    Assignee: UOP LLC
    Inventors: Stanley Joseph Frey, Krishna Mani, Krishan Pratap Jadaun, Gautam Pandey, Mousumi Chanda
  • Publication number: 20210062099
    Abstract: Processes for co-processing a naphtha stream with a light cycle oil stream are disclosed. The processes include hydrocracking the light cycle oil stream under hydrocracking conditions to provide a hydrocracked effluent stream. A naphtha stream is hydrotreated under hydrotreating conditions to provide a hydrotreated effluent stream. The hydrocracked effluent stream and the hydrotreated effluent stream may be passed to a stripping column to recover a stripping bottom stream. The stripping bottom stream may be passed to a main fractionation column to recover an intermediate naphtha stream.
    Type: Application
    Filed: August 31, 2019
    Publication date: March 4, 2021
    Inventors: Stanley Joseph Frey, Krishna Mani, Krishan Pratap Jadaun, Gautam Pandey, Mousumi Chanda
  • Publication number: 20200102510
    Abstract: Processes and apparatus for maximizing production of heavy naphtha from a hydrocarbon stream are provided. The process comprises providing a hydrocarbon feed stream comprising vacuum gas oil to a first hydrocracking reactor. The hydrocarbon feed stream is hydrocracked at first hydrocracking conditions comprising a first hydrocracking pressure to provide a first hydrocracked effluent stream therein. At least a portion of the first hydrocracked effluent stream is fractionated in a fractionation column to provide a heavy naphtha fraction. A kerosene stream is hydrocracked in a second hydrocracking reactor operating at second hydrocracking conditions comprising a second hydrocracking pressure to provide a second hydrocracked effluent stream. In an aspect, the first hydrocracking pressure can be greater than the second hydrocracking pressure by at least about 6895 kPa (g).
    Type: Application
    Filed: September 29, 2018
    Publication date: April 2, 2020
    Inventors: Krishna Mani, Deepak Bisht, Krishan Pratap Jadaun, Nikhil Gupta, Arunim Bose, Soumendra Mohan Banerjee, Rajaraman Panchapakesan
  • Patent number: 10519388
    Abstract: The present invention discloses a process and apparatus for selectively hydrogenating diolefins in a cracked stream. The method combines a conversion unit and a recovery section. The recovery section includes the diolefin hydrogenation reactor that is used to selectively hydrogenate the diolefins in the cracked naphtha. The diolefin depleted naphtha may be debutanized to separate the stabilized naphtha and liquefied petroleum gas streams.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: December 31, 2019
    Assignee: UOP LLC
    Inventors: Steven F. Zink, Krishna Mani, Krishan Pratap Jadaun, Soumendra Mohan Banerjee
  • Publication number: 20180155640
    Abstract: A process for reducing the sulfur content of FCC naphtha is described. The process includes introducing a FCC naphtha feed to a selective hydrogenation zone to form a hydrogenated feed. The hydrogenated feed is separated into light fraction and a heavy fraction. The heavy fraction is introduced into a selective hydrodesulfurization zone to form a desulfurized stream which contains mercaptans. The desulfurized stream is separated into a mercaptan rich stream and a mercaptan lean stream. The mercaptan rich stream is treated with a caustic extraction process, a hydrodesulfurization reaction zone, a selective hydrogenation process, an adsorption process, or an ionic liquid extraction process to remove at least a portion of the mercaptan compounds to form a second mercaptan lean stream.
    Type: Application
    Filed: January 31, 2018
    Publication date: June 7, 2018
    Inventors: Vikrant Vilasrao Dalal, Krishna Mani, Krishan Pratap Jadaun, Steven F. Zink
  • Publication number: 20180044600
    Abstract: The present invention discloses a process and apparatus for selectively hydrogenating diolefins in a cracked stream. The method combines a conversion unit and a recovery section. The recovery section includes the diolefin hydrogenation reactor that is used to selectively hydrogenate the diolefins in the cracked naphtha. The diolefin depleted naphtha may be debutanized to separate the stabilized naphtha and liquefied petroleum gas streams.
    Type: Application
    Filed: October 30, 2017
    Publication date: February 15, 2018
    Inventors: Steven F. Zink, Krishna Mani, Krishan Pratap Jadaun, Soumendra Mohan Banerjee