Patents by Inventor Krishna Mani

Krishna Mani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250188366
    Abstract: Hydrodeoxygenating a biorenewable feed that is concentrated in free fatty acids with 12 and 14 carbon atoms at a moderate hydrodeoxygenation ratio that is less than the ratio of hydrodeoxygenation utilized for traditional biorenewable feeds such as vegetable oil or even mineral feedstocks, normal paraffins in the range desired by the detergents industry can be produced. Either hydroisomerization or an iso-normal separation can be performed to provide green fuel streams. Two reactors are proposed, one for hydrodeoxygenation of the biorenewable feed that is concentrated in free fatty acids with 12 and 14 carbon atoms and the other for a traditional biorenewable feed or even a mineral feed operated at a higher deoxygenation ratio.
    Type: Application
    Filed: February 25, 2025
    Publication date: June 12, 2025
    Inventors: Andrea G. Bozzano, Krishan Pratap Jaduan, Krishna Mani, Stanley Joseph Frey
  • Publication number: 20250084317
    Abstract: A process and apparatus for hydrotreating a renewable feedstock with improved carbon monoxide management is disclosed. A mixture of renewable feedstock and hydrocarbon feedstock is treated in a hydrotreating reactor to produce a hydrotreated effluent stream and contacting the hydrotreated effluent stream with a water gas shift catalyst bed to produce a shift reactor effluent stream. The shift reactor effluent stream is passed to a cold separator to recover a cold vapor stream and recycling the cold vapor stream having reduced concentration of carbon monoxide to the hydrotreating zone. The subject matter disclosed provides an improved process and apparatus to reduce the accumulation of CO by converting CO present in the hydrotreated effluent stream to CO2 using the water shift gas reaction.
    Type: Application
    Filed: November 23, 2024
    Publication date: March 13, 2025
    Inventors: Krishan Pratap Jadaun, Hari S. Bajpai, Krishna Mani
  • Patent number: 12195683
    Abstract: The apparatus produces a diesel stream from a biorenewable feedstock by hydrotreating to remove heteroatoms and hydroisomerization to improve cold flow properties. Heavy diesel can be hydrocracked to jet fuel range material or further hydroisomerized to increase its value lower its freeze point while light diesel may be taken as a motor fuel.
    Type: Grant
    Filed: April 17, 2023
    Date of Patent: January 14, 2025
    Assignee: UOP LLC
    Inventors: Andrea G. Bozzano, Haiyan Wang, Krishna Mani, Stanley Joseph Frey
  • Patent number: 12173238
    Abstract: A process for hydrotreating a renewable feedstock with improved carbon monoxide management is disclosed. A mixture of renewable feedstock and hydrocarbon feedstock is treated in a hydrotreating reactor to produce a hydrotreated effluent stream and contacting the hydrotreated effluent stream with a water gas shift catalyst bed to produce a shift reactor effluent stream. The shift reactor effluent stream is passed to a cold separator to recover a cold vapor stream and recycling the cold vapor stream having reduced concentration of carbon monoxide to the hydrotreating zone. The subject matter disclosed provides an improved process and apparatus to reduce the accumulation of CO by converting CO present in the hydrotreated effluent stream to CO2 using the water shift gas reaction.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: December 24, 2024
    Assignee: UOP LLC
    Inventors: Krishan Pratap Jadaun, Hari S. Bajpai, Krishna Mani
  • Patent number: 12151200
    Abstract: A process is provided for purification of biogas to produce biomethane. The biogas is treated in a pressure swing adsorption unit to remove carbon dioxide and water. Other impurities including oxygen, hydrogen and carbon monoxide may be removed by an additional adsorption bed. The adsorption beds may be single stage or two-stage VPSA or PSA adsorption beds.
    Type: Grant
    Filed: December 28, 2023
    Date of Patent: November 26, 2024
    Assignee: UOP LLC
    Inventors: Christopher DiGiulio, Gaurav Srivastava, Shubhra J Bhadra, Krishna Mani
  • Publication number: 20240327720
    Abstract: A renewable feed that is concentrated linear C10-C13 paraffins is produced by hydrodeoxygenating a renewable feedstock is produced by first hydrotreating the feedstock to remove heteroatoms followed by use of a Group VI or VIII catalyst producing a 10-13 carbon atom product having a high level of linearity. Normal paraffins in the range desired by the detergents industry can be produced.
    Type: Application
    Filed: June 13, 2024
    Publication date: October 3, 2024
    Inventors: Avram M. Buchbinder, Stanley Joseph Frey, Zhanyong Li, Krishna Mani, Richa Sharma, Krishan Pratap Jadaun, Eseoghene Jeroro
  • Publication number: 20240217899
    Abstract: A biorenewable feed that is concentrated in free fatty acids is produced by hydrodeoxygenating a biorenewable feedstock is produced by use of a Group VIII catalyst producing a 10-13 carbon atom product having a high level of linearity. Normal paraffins in the range desired by the detergents industry can be produced. Either isomerization or an iso-normal separation can be performed to provide green fuel streams.
    Type: Application
    Filed: December 22, 2023
    Publication date: July 4, 2024
    Inventors: Avram M. Buchbinder, Stanley Joseph Frey, Zhanyong LI, Krishna Mani, Richa Sharma, Krishan Pratap Jadaun, Eseoghene Jeroro
  • Publication number: 20240132785
    Abstract: Hydrodeoxygenating a biorenewable feed that is concentrated in free fatty acids with 12 and 14 carbon atoms at a moderate hydrodeoxygenation ratio that is less than the ratio of hydrodeoxygenation utilized for traditional biorenewable feeds such as vegetable oil or even mineral feedstocks, normal paraffins in the range desired by the detergents industry can be produced. Either hydroisomerization or an iso-normal separation can be performed to provide green fuel streams. Two reactors are proposed, one for hydrodeoxygenation of the biorenewable feed that is concentrated in free fatty acids with 12 and 14 carbon atoms and the other for a traditional biorenewable feed or even a mineral feed operated at a higher deoxygenation ratio.
    Type: Application
    Filed: December 22, 2023
    Publication date: April 25, 2024
    Inventors: Andrea G. Bozzano, Krishan Pratap Jadaun, Krishna Mani, Stanley Joseph Frey
  • Patent number: 11898105
    Abstract: Hydrodeoxygenating a biorenewable feed that is concentrated in free fatty acids with 10-13 carbon atoms at a moderate hydrodeoxygenation ratio that is less than the ratio of hydrodeoxygenation utilized for traditional biorenewable feeds such as vegetable oil or even mineral feedstocks, normal paraffins in the range desired by the detergents industry can be produced. Either hydroisomerization or an iso-normal separation can be performed to provide green fuel streams. Two reactors are proposed, one for hydrodeoxygenation of the biorenewable feed that is concentrated in free fatty acids with 10-13 carbon atoms and the other for a traditional biorenewable feed or even a mineral feed operated at a higher deoxygenation ratio.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: February 13, 2024
    Assignee: UOP LLC
    Inventors: Krishan Pratap Jadaun, Andrea G. Bozzano, Krishna Mani, Stanley Joseph Frey
  • Publication number: 20230250347
    Abstract: The apparatus produces a diesel stream from a biorenewable feedstock by hydrotreating to remove heteroatoms and hydroisomerization to improve cold flow properties. Heavy diesel can be hydrocracked to jet fuel range material or further hydroisomerized to increase its value lower its freeze point while light diesel may be taken as a motor fuel.
    Type: Application
    Filed: April 17, 2023
    Publication date: August 10, 2023
    Inventors: Andrea G. Bozzano, Haiyan Wang, Krishna Mani, Stanley Joseph Frey
  • Patent number: 11676061
    Abstract: This disclosure provides an apparatus and method for harnessing machine learning and data analytics for a real-time predictive model for a FCC pre-treatment unit. The method includes collecting operating parameters of a pre-treatment unit and fluid catalytic cracking (FCC) unit; evaluating an independent variable of the operating parameters; and adjusting an input to the pre-treatment unit to control the independent variable within specifications in an output of the FCC unit.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: June 13, 2023
    Assignee: Honeywell International Inc.
    Inventors: Soumendra Mohan Banerjee, Deepak Bisht, Krishna Mani, Priyesh Jayendrakumar Jani, Gautam Pandey
  • Patent number: 11655424
    Abstract: The process produces a diesel stream from a biorenewable feedstock by hydrotreating to remove heteroatoms and hydroisomerization to improve cold flow properties. Heavy diesel can be hydrocracked to jet fuel range material or further hydroisomerized to increase its value lower its freeze point while light diesel may be taken as a motor fuel.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: May 23, 2023
    Assignee: UOP LLC
    Inventors: Andrea G. Bozzano, Haiyan Wang, Krishna Mani, Stanley Joseph Frey
  • Publication number: 20230137687
    Abstract: Hydrodeoxygenating a biorenewable feed that is concentrated in free fatty acids with 10-13 carbon atoms at a moderate hydrodeoxygenation ratio that is less than the ratio of hydrodeoxygenation utilized for traditional biorenewable feeds such as vegetable oil or even mineral feedstocks, normal paraffins in the range desired by the detergents industry can be produced. Either hydroisomerization or an iso-normal separation can be performed to provide green fuel streams. Two reactors are proposed, one for hydrodeoxygenation of the biorenewable feed that is concentrated in free fatty acids with 10-13 carbon atoms and the other for a traditional biorenewable feed or even a mineral feed operated at a higher deoxygenation ratio.
    Type: Application
    Filed: October 28, 2021
    Publication date: May 4, 2023
    Inventors: Krishan Pratap Jadaun, Andrea G. Bozzano, Krishna Mani, Stanley Joseph Frey
  • Publication number: 20220127537
    Abstract: The process produces a diesel stream from a biorenewable feedstock by hydrotreating to remove heteroatoms and hydroisomerization to improve cold flow properties. Heavy diesel can be hydrocracked to jet fuel range material or further hydroisomerized to increase its value lower its freeze point while light diesel may be taken as a motor fuel.
    Type: Application
    Filed: October 8, 2021
    Publication date: April 28, 2022
    Inventors: Andrea G. Bozzano, Haiyan Wang, Krishna Mani, Stanley Joseph Frey
  • Publication number: 20210403814
    Abstract: A process for hydrotreating a renewable feedstock with improved carbon monoxide management is disclosed. A mixture of renewable feedstock and hydrocarbon feedstock is treated in a hydrotreating reactor to produce a hydrotreated effluent stream and contacting the hydrotreated effluent stream with a water gas shift catalyst bed to produce a shift reactor effluent stream. The shift reactor effluent stream is passed to a cold separator to recover a cold vapor stream and recycling the cold vapor stream having reduced concentration of carbon monoxide to the hydrotreating zone. The subject matter disclosed provides an improved process and apparatus to reduce the accumulation of CO by converting CO present in the hydrotreated effluent stream to CO2 using the water shift gas reaction.
    Type: Application
    Filed: June 16, 2021
    Publication date: December 30, 2021
    Inventors: Krishan Pratap Jadaun, Hari S. Bajpai, Krishna Mani
  • Patent number: 11104855
    Abstract: Processes for co-processing a naphtha stream with a light cycle oil stream are disclosed. The processes include hydrocracking the light cycle oil stream under hydrocracking conditions to provide a hydrocracked effluent stream. A naphtha stream is hydrotreated under hydrotreating conditions to provide a hydrotreated effluent stream. The hydrocracked effluent stream and the hydrotreated effluent stream may be passed to a stripping column to recover a stripping bottom stream. The stripping bottom stream may be passed to a main fractionation column to recover an intermediate naphtha stream.
    Type: Grant
    Filed: August 31, 2019
    Date of Patent: August 31, 2021
    Assignee: UOP LLC
    Inventors: Stanley Joseph Frey, Krishna Mani, Krishan Pratap Jadaun, Gautam Pandey, Mousumi Chanda
  • Patent number: 11040926
    Abstract: An integrated process for maximizing recovery of aromatics is provided. The process comprises passing at least a portion of a xylene column bottoms stream to a heavy aromatics column to provide a heavy aromatics column bottoms stream comprising C9+ aromatics and a heavy aromatics column overhead stream. The heavy aromatics column bottoms stream is passed to a second stage hydrocracking reactor of a two-stage hydrocracking reactor. In the second stage hydrocracking reactor, the heavy aromatics column bottoms stream is hydrocracked in the presence of a hydrocracking catalyst and hydrogen to provide a hydrocracked effluent stream.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: June 22, 2021
    Assignee: UOP LLC
    Inventors: Gautam Pandey, Krishna Mani, Deepak Bisht, Priyesh Jayendrakumar Jani, Vikrant Vilasrao Dalal, Ram Ganesh Rokkam
  • Publication number: 20210062099
    Abstract: Processes for co-processing a naphtha stream with a light cycle oil stream are disclosed. The processes include hydrocracking the light cycle oil stream under hydrocracking conditions to provide a hydrocracked effluent stream. A naphtha stream is hydrotreated under hydrotreating conditions to provide a hydrotreated effluent stream. The hydrocracked effluent stream and the hydrotreated effluent stream may be passed to a stripping column to recover a stripping bottom stream. The stripping bottom stream may be passed to a main fractionation column to recover an intermediate naphtha stream.
    Type: Application
    Filed: August 31, 2019
    Publication date: March 4, 2021
    Inventors: Stanley Joseph Frey, Krishna Mani, Krishan Pratap Jadaun, Gautam Pandey, Mousumi Chanda
  • Publication number: 20210024434
    Abstract: An integrated process for maximizing recovery of aromatics is provided. The process comprises passing at least a portion of a xylene column bottoms stream to a heavy aromatics column to provide a heavy aromatics column bottoms stream comprising C9+ aromatics and a heavy aromatics column overhead stream. The heavy aromatics column bottoms stream is passed to a second stage hydrocracking reactor of a two-stage hydrocracking reactor. In the second stage hydrocracking reactor, the heavy aromatics column bottoms stream is hydrocracked in the presence of a hydrocracking catalyst and hydrogen to provide a hydrocracked effluent stream.
    Type: Application
    Filed: July 22, 2019
    Publication date: January 28, 2021
    Inventors: Gautam Pandey, Krishna Mani, Deepak Bisht, Priyesh Jayendrakumar Jani, Vikrant Vilasrao Dalal, Ram Ganesh Rokkam
  • Patent number: 10899975
    Abstract: An integrated process for maximizing recovery of hydrogen is provided. The process comprises: providing a hydrocarbonaceous feed comprising naphtha, and a hydrogen stream to a reforming zone, wherein the hydrogen stream is obtained from at least one of a hydrocracking zone, a transalkylation zone, and an isomerization zone. The hydrocarbonaceous feed is reformed in the reforming zone in the presence of the hydrogen stream and a reforming catalyst to provide a reformate effluent stream. At least a portion of the reformate effluent stream is passed to a debutanizer column of the reforming zone to provide a net hydrogen stream and a fraction comprising liquid petroleum gas (LPG). At least a portion of the net hydrogen stream is recycled to the reforming zone as the hydrogen stream.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: January 26, 2021
    Assignee: UOP LLC
    Inventors: Gautam Madhusadan Pandey, Krishna Mani, Deepak Bisht, Priyesh Jayendrakumar Jani, Vikrant Vilasrao Dalal, Ram Ganesh Rokkam