Patents by Inventor Krishna Naishadham

Krishna Naishadham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9759688
    Abstract: A gas sensor utilizing carbon nanotubes (CNTs) is disclosed. The sensor can include a patch antenna, a feed line, and a stub line. The stub line can include a carbon nanotube (CNT) thin-film layer for gas detection. The CNTs can be functionalized to detect one or more analytes with specificity designed to detect, for example, environmental air contaminants, hazardous gases, or explosives. The sensor can provide extremely sensitive gas detection by monitoring the shift in resonant frequency of the sensor circuit resulting from the adsorption of the analyte by the CNT thin-film layer. The sensor can be manufactured using inkjet printing technologies to reduce costs. The integration of an efficient antenna on the same substrate as the sensor enables wireless applications of the sensor without additional components, for wireless standoff chemical sensing applications including, for example, defense, industrial monitoring, environmental sensing, automobile exhaust analysis, and healthcare applications.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: September 12, 2017
    Assignee: Georgia Tech Research Corporation
    Inventors: Krishna Naishadham, Xiaojuan Song, Brent Wagner
  • Publication number: 20130230429
    Abstract: A gas sensor utilizing carbon nanotubes (CNTs) is disclosed. The sensor can include a patch antenna, a feed line, and a stub line. The stub line can include a carbon nanotube (CNT) thin-film layer for gas detection. The CNTs can be functionalized to detect one or more analytes with specificity designed to detect, for example, environmental air contaminants, hazardous gases, or explosives. The sensor can provide extremely sensitive gas detection by monitoring the shift in resonant frequency of the sensor circuit resulting from the adsorption of the analyte by the CNT thin-film layer. The sensor can be manufactured using inkjet printing technologies to reduce costs. The integration of an efficient antenna on the same substrate as the sensor enables wireless applications of the sensor without additional components, for wireless standoff chemical sensing applications including, for example, defense, industrial monitoring, environmental sensing, automobile exhaust analysis, and healthcare applications.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 5, 2013
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Krishna Naishadham, Xiaojuan Song, Brent Wagner