Patents by Inventor Krishnamurthy Ganapathi Shankar

Krishnamurthy Ganapathi Shankar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11614479
    Abstract: A device includes FETs with control terminals. A gate driver circuit causes the FETs to turn on and to enter a high-impedance state in response to an OCP signal. A current sense circuit senses an FET current through the FETs and sends the OCP signal to the gate driver circuit when the FET current exceeds an OCP current for longer than an OCP deglitch period. A test sequencer, in response to receiving an external test mode signal, sets the OCP current to a preset OCP test current, sets the OCP deglitch period to a preset OCP deglitch test period, and causes the gate driver circuit to turn on the plurality of FETs.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: March 28, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Sandeep Kalyadan, Krishnamurthy Ganapathi Shankar, Venkatesh Guduri
  • Publication number: 20230056957
    Abstract: A device includes FETs with control terminals. A gate driver circuit causes the FETs to turn on and to enter a high-impedance state in response to an OCP signal. A current sense circuit senses an FET current through the FETs and sends the OCP signal to the gate driver circuit when the FET current exceeds an OCP current for longer than an OCP deglitch period. A test sequencer, in response to receiving an external test mode signal, sets the OCP current to a preset OCP test current, sets the OCP deglitch period to a preset OCP deglitch test period, and causes the gate driver circuit to turn on the plurality of FETs.
    Type: Application
    Filed: August 23, 2021
    Publication date: February 23, 2023
    Inventors: Sandeep KALYADAN, Krishnamurthy Ganapathi SHANKAR, Venkatesh GUDURI
  • Patent number: 11543846
    Abstract: A driver circuit includes three sub-circuits. A first sub-circuit is configured to generate a drive current output by the driver circuit through an output node during first and second regions of operation and includes: a diode coupled to the output node and a first transistor, and a second transistor coupled to the first transistor and a current mirror. A second sub-circuit is configured to generate the drive current during the first and second and a third region of operation and includes: a third transistor coupled to the output node; and a fourth transistor. A third sub-circuit is configured to generate the drive current during the third region of operation and includes: a current source coupled to the current mirror and a buffer; and a fifth transistor coupled to the third transistor and the fourth transistor and configured to receive an output of the buffer.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: January 3, 2023
    Assignee: Texas Instruments Incorporated
    Inventor: Krishnamurthy Ganapathi Shankar
  • Publication number: 20210405678
    Abstract: A driver circuit includes three sub-circuits. A first sub-circuit is configured to generate a drive current output by the driver circuit through an output node during first and second regions of operation and includes: a diode coupled to the output node and a first transistor, and a second transistor coupled to the first transistor and a current mirror. A second sub-circuit is configured to generate the drive current during the first and second and a third region of operation and includes: a third transistor coupled to the output node; and a fourth transistor. A third sub-circuit is configured to generate the drive current during the third region of operation and includes: a current source coupled to the current mirror and a buffer; and a fifth transistor coupled to the third transistor and the fourth transistor and configured to receive an output of the buffer.
    Type: Application
    Filed: September 8, 2021
    Publication date: December 30, 2021
    Inventor: Krishnamurthy Ganapathi SHANKAR
  • Patent number: 11144082
    Abstract: A driver circuit comprises a first buffer receiving a control signal, and a first transistor coupled to first buffer and an output. A second transistor is coupled to a first current mirror and the output. A third transistor is coupled to the output and an inverter. A fourth transistor receives the inverter's output at its control input and is coupled to the output. A fifth transistor is coupled to third transistor. The second, third, and fifth transistors receive supply voltage at their respective control inputs. A sixth transistor receives the control signal's inverse at its control input and is coupled to fifth transistor and a second current mirror. A current source is coupled to second current mirror and a second buffer. A seventh transistor receives the second buffer's output at its control input and is coupled to first buffer. An eighth transistor is coupled to first buffer and seventh transistor.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: October 12, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Krishnamurthy Ganapathi Shankar
  • Publication number: 20200356129
    Abstract: A driver circuit comprises a first buffer receiving a control signal, and a first transistor coupled to first buffer and an output. A second transistor is coupled to a first current mirror and the output. A third transistor is coupled to the output and an inverter. A fourth transistor receives the inverter's output at its control input and is coupled to the output. A fifth transistor is coupled to third transistor. The second, third, and fifth transistors receive supply voltage at their respective control inputs. A sixth transistor receives the control signal's inverse at its control input and is coupled to fifth transistor and a second current mirror. A current source is coupled to second current mirror and a second buffer. A seventh transistor receives the second buffer's output at its control input and is coupled to first buffer. An eighth transistor is coupled to first buffer and seventh transistor.
    Type: Application
    Filed: March 30, 2020
    Publication date: November 12, 2020
    Inventor: Krishnamurthy Ganapathi SHANKAR
  • Patent number: 10819351
    Abstract: A driver circuit comprises a first transistor coupled to a second transistor, and a third transistor coupled to the first and second transistor and to a first current mirror. An output of the first current mirror is provided to a control input of the second transistor. A second current mirror is coupled to the output of the first current mirror. A first current source, a second current source, and a fourth transistor are coupled to the second current mirror. The second current source is further coupled to a fifth transistor. A sixth transistor is coupled to the fifth transistor and to a third current mirror. In some implementations, the driver circuit is coupled to a low side transistor in an H bridge driver and the second transistor is matched to the low side transistor.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: October 27, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Krishnamurthy Ganapathi Shankar
  • Patent number: 10763843
    Abstract: A system includes a trickle charge control circuit coupled to a charge pump and a motor driver circuit. The trickle charge control circuit is configured to sense a voltage at a bootstrap capacitor voltage node (VBST) of the motor driver circuit; as a result of the voltage at VBST being greater than a voltage at an input voltage node (VIN), couple a charge pump voltage node (VCP) to VBST of the motor driver circuit, where a voltage at VCP is greater than the voltage at VIN; and as a result of the voltage at VBST being less than the voltage at VIN, decouple VCP from the charge pump from VBST of the motor driver circuit.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: September 1, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Krishnamurthy Ganapathi Shankar
  • Patent number: 10642306
    Abstract: A driver circuit comprises a first buffer receiving a control signal, and a first transistor coupled to first buffer and an output. A second transistor is coupled to a first current mirror and the output. A third transistor is coupled to the output and an inverter. A fourth transistor receives the inverter's output at its control input and is coupled to the output. A fifth transistor is coupled to third transistor. The second, third, and fifth transistors receive supply voltage at their respective control inputs. A sixth transistor receives the control signal's inverse at its control input and is coupled to fifth transistor and a second current mirror. A current source is coupled to second current mirror and a second buffer. A seventh transistor receives the second buffer's output at its control input and is coupled to first buffer. An eighth transistor is coupled to first buffer and seventh transistor.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: May 5, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Krishnamurthy Ganapathi Shankar
  • Publication number: 20200036372
    Abstract: A system includes a trickle charge control circuit coupled to a charge pump and a motor driver circuit. The trickle charge control circuit is configured to sense a voltage at a bootstrap capacitor voltage node (VBST) of the motor driver circuit; as a result of the voltage at VBST being greater than a voltage at an input voltage node (VIN), couple a charge pump voltage node (VCP) to VBST of the motor driver circuit, where a voltage at VCP is greater than the voltage at VIN; and as a result of the voltage at VBST being less than the voltage at VIN, decouple VCP from the charge pump from VBST of the motor driver circuit.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 30, 2020
    Inventor: Krishnamurthy Ganapathi SHANKAR
  • Patent number: 10469066
    Abstract: A system includes a trickle charge control circuit coupled to a charge pump and a motor driver circuit. The trickle charge control circuit is configured to sense a voltage at a bootstrap capacitor voltage node (VBST) of the motor driver circuit; as a result of the voltage at VBST being greater than a voltage at an input voltage node (VIN), couple a charge pump voltage node (VCP) to VBST of the motor driver circuit, where a voltage at VCP is greater than the voltage at VIN; and as a result of the voltage at VBST being less than the voltage at VIN, decouple VCP from the charge pump from VBST of the motor driver circuit.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: November 5, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Krishnamurthy Ganapathi Shankar