Patents by Inventor Kristen Carlisle

Kristen Carlisle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230369576
    Abstract: Various embodiments provide a battery, a bulk energy storage system including the battery, and/or a method of operating the bulk energy storage system including the battery. In various embodiment, the battery may include a first electrode, an electrolyte, and a second electrode, wherein one or both of the first electrode and the second electrode comprises direct reduced iron (“DRI”). In various embodiments, the DRI may be in the form of pellets. In various embodiments, the pellets may comprise at least about 60 wt % iron by elemental mass, based on the total mass of the pellets. In various embodiments, one or both of the first electrode and the second electrode comprises from about 60% to about 90% iron and from about 1% to about 40% of a component comprising one or more of the materials selected from the group of SiO2, Al2O3, MgO, CaO, and TiO2.
    Type: Application
    Filed: January 3, 2023
    Publication date: November 16, 2023
    Inventors: Rupak CHAKRABORTY, Jarrod David MILSHTEIN, Eric WEBER, William Henry WOODFORD, Yet-Ming CHIANG, Ian Salmon MCKAY, Liang SU, Jay WHITACRE, Theodore Alan WILEY, Kristen CARLISLE, Mitchell Terrance WESTWOOD, Rachel Elizabeth MUMMA, Max Rae CHU, Amelie Nina KHAREY, Benjamin Thomas HULTMAN, Marco FERRARA, Mateo Cristian JARAMILLO, Isabella CARUSO, Jocelyn NEWHOUSE
  • Patent number: 11552290
    Abstract: Various embodiments provide a battery, a bulk energy storage system including the battery, and/or a method of operating the bulk energy storage system including the battery. In various embodiment, the battery may include a first electrode, an electrolyte, and a second electrode, wherein one or both of the first electrode and the second electrode comprises direct reduced iron (“DRI”). In various embodiments, the DRI may be in the form of pellets. In various embodiments, the pellets may comprise at least about 60 wt % iron by elemental mass, based on the total mass of the pellets. In various embodiments, one or both of the first electrode and the second electrode comprises from about 60% to about 90% iron and from about 1% to about 40% of a component comprising one or more of the materials selected from the group of SiO2, Al2O3, MgO, CaO, and TiO2.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: January 10, 2023
    Assignee: FORM ENERGY, INC.
    Inventors: Rupak Chakraborty, Jarrod David Milshtein, Eric Weber, William Henry Woodford, Yet-Ming Chiang, Ian Salmon McKay, Liang Su, Jay Whitacre, Theodore Alan Wiley, Kristen Carlisle, Mitchell Terrance Westwood, Rachel Elizabeth Mumma, Max Rae Chu, Amelie Nina Kharey, Benjamin Thomas Hultman, Marco Ferrara, Mateo Cristian Jaramillo, Isabella Caruso, Jocelyn Newhouse
  • Publication number: 20220344647
    Abstract: Various embodiments provide a battery, a bulk energy storage system including the battery, and/or a method of operating the bulk energy storage system including the battery. In various embodiment, the battery may include a first electrode, an electrolyte, and a second electrode, wherein one or both of the first electrode and the second electrode comprises direct reduced iron (“DRI”). In various embodiments, the DRI may be in the form of pellets. In various embodiments, the pellets may comprise at least about 60 wt % iron by elemental mass, based on the total mass of the pellets. In various embodiments, one or both of the first electrode and the second electrode comprises from about 60% to about 90% iron and from about 1% to about 40% of a component comprising one or more of the materials selected from the group of SiO2, Al2O3, MgO, CaO, and TiO2.
    Type: Application
    Filed: July 26, 2019
    Publication date: October 27, 2022
    Inventors: Rupak CHAKRABORTY, Jarrod David MILSHTEIN, Eric WEBER, William Henry WOODFORD, Yet-Ming CHIANG, Ian Salmon MCKAY, Liang SU, Jay WHITACRE, Theodore Alan WILEY, Kristen CARLISLE, Mitchell Terrance WESTWOOD, Rachel Elizabeth MUMMA, Max Rae CHU, Amelie Nina KHAREY, Benjamin Thomas HULTMAN, Marco FERRARA, Mateo Cristian JARAMILLO, Isabella CARUSO, Jocelyn NEWHOUSE
  • Publication number: 20200411932
    Abstract: Systems and methods of the various embodiments may provide device architectures for batteries. In various embodiments, these may be primary or secondary batteries. In various embodiments these devices may be useful for energy storage. Various embodiments may provide a battery including an Oxygen Reduction Reaction (ORR) electrode, an Oxygen Evolution Reaction (OER) electrode, a metal electrode; and an electrolyte separating the ORR electrode and the OER electrode from the metal electrode.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 31, 2020
    Inventors: Eric WEBER, Mitchell Terrance WESTWOOD, Rachel Elizabeth MUMMA, Alexander H. SLOCUM, Liang SU, Jarrod David MILSHTEIN, William Henry WOODFORD, Yet-Ming CHIANG, Mateo Cristian JARAMILLO, Ian Salmon MCKAY, Fikile BRUSHETT, Helen Van BENSCHOTEN, Tristan GILBERT, Nicholas Reed PERKINS, Joseph Anthony PANTANO, Weston SMITH, Kristen CARLISLE, Isabella CARUSO, Benjamin Thomas HULTMAN, Annelise Christine THOMPSON, Danielle SMITH, Vladimir TARASOV, Katherine HARTMAN, Andrew Haynes LIOTTA, Onur TALU, Marc-Antoni GOULET, Rupak CHAKRABORTY, Florian WEHNER, Bradley MILESON, Alexandra ROUSSEAU
  • Publication number: 20200411879
    Abstract: Systems and methods of the various embodiments may provide low cost bifunctional air electrodes. Various embodiments may provide a bifunctional air electrode, including a metal substrate and particles of metal and/or metal oxide catalyst and/or metal nitride catalyst coated on the metal substrate. Various embodiments may provide a bifunctional air electrode, including a first portion configured to engage an oxygen reduction reaction (ORR) in a discharge mode and a second portion configured to engage an oxygen evolution reaction (OER) in a charge mode. Various embodiments may provide a method for making an air electrode including coating a metal substrate with particles of metal and/or metal oxide catalyst and/or metal nitride catalyst. Various embodiments may provide batteries including air electrodes.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 31, 2020
    Inventors: Katherine HARTMAN, Kristen CARLISLE, Jarrod David MILSHTEIN, Liang SU, Rupak CHAKRABORTY, Yet-Ming CHIANG, Thomas JARAMILLO, William Henry WOODFORD, Marco FERRARA, Mateo Cristian JARAMILLO, Theodore Alan WILEY, Erick RUOFF, Nicholas Reed PERKINS, Marc-Antoni GOULET, Joycelyn NEWHOUSE, Andrew Haynes LIOTTA, Bradley MILESON, Michael Andrew GIBSON, Eric WEBER, Annelise Christine THOMPSON
  • Publication number: 20200036002
    Abstract: Various embodiments provide a battery, a bulk energy storage system including the battery, and/or a method of operating the bulk energy storage system including the battery. In various embodiment, the battery may include a first electrode, an electrolyte, and a second electrode, wherein one or both of the first electrode and the second electrode comprises direct reduced iron (“DRI”). In various embodiments, the DRI may be in the form of pellets. In various embodiments, the pellets may comprise at least about 60 wt % iron by elemental mass, based on the total mass of the pellets. In various embodiments, one or both of the first electrode and the second electrode comprises from about 60% to about 90% iron and from about 1% to about 40% of a component comprising one or more of the materials selected from the group of SiO2, Al2O3, MgO, CaO, and TiO2.
    Type: Application
    Filed: July 26, 2019
    Publication date: January 30, 2020
    Inventors: Rupak CHAKRABORTY, Jarrod David MILSHTEIN, Eric WEBER, William Henry WOODFORD, Yet-Ming CHIANG, Ian Salmon MCKAY, Liang SU, Jay WHITACRE, Theodore Alan WILEY, Kristen CARLISLE, Mitchell Terrance WESTWOOD, Rachel Elizabeth MUMMA, Max Rae CHU, Amelie Nina KHAREY, Benjamin Thomas HULTMAN, Marco FERRARA, Mateo Cristian JARAMILLO, Isabella CARUSO, Jocelyn NEWHOUSE
  • Patent number: 9728775
    Abstract: An anode electrode for an energy storage device includes both an ion intercalation material and a pseudocapacitive material. The ion intercalation material may be a NASICON material, such as NaTi2(PO4)3 and the pseudocapacitive material may be an activated carbon material. The energy storage device also includes a cathode, an electrolyte and a separator.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: August 8, 2017
    Assignee: AQUION ENERGY, INC.
    Inventors: Jay Whitacre, Alex Mohamed, Andrew Polonsky, Sneha Shanbhag, Kristen Carlisle
  • Publication number: 20150155551
    Abstract: An anode electrode for an energy storage device includes both an ion intercalation material and a pseudocapacitive material. The ion intercalation material may be a NASICON material, such as NaTi2(PO4)3 and the pseudocapacitive material may be an activated carbon material. The energy storage device also includes a cathode, an electrolyte and a separator.
    Type: Application
    Filed: December 4, 2014
    Publication date: June 4, 2015
    Inventors: Jay Whitacre, Alex Mohamed, Andrew Polonsky, Sneha Shanbhag, Kristen Carlisle
  • Patent number: 8945756
    Abstract: An anode electrode for an energy storage device includes both an ion intercalation material and a pseudocapacitive material. The ion intercalation material may be a NASICON material, such as NaTi2(PO4)3 and the pseudocapacitive material may be an activated carbon material. The energy storage device also includes a cathode, an electrolyte and a separator.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: February 3, 2015
    Assignee: Aquion Energy Inc.
    Inventors: Jay Whitacre, Alex Mohamed, Andrew Polonsky, Sneha Shanbhag, Kristen Carlisle
  • Publication number: 20140159668
    Abstract: An anode electrode for an energy storage device includes both an ion intercalation material and a pseudocapacitive material. The ion intercalation material may be a NASICON material, such as NaTi2(PO4)3 and the pseudocapacitive material may be an activated carbon material. The energy storage device also includes a cathode, an electrolyte and a separator.
    Type: Application
    Filed: August 21, 2013
    Publication date: June 12, 2014
    Applicant: Aquion Energy Inc.
    Inventors: Jay Whitacre, Alex Mohamed, Andrew Polonsky, Sneha Shanbhag, Kristen Carlisle