Patents by Inventor Kristen G. Denzinger

Kristen G. Denzinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11968776
    Abstract: Disclosed is a method of assembling a backplane connector subassembly for a module of a modular energy system. The backplane connector subassembly physically and electrically connects at least two modules stacked on top of one another. The method includes providing a back panel defining an inner surface, attaching a first support member to the inner surface of the back panel, attaching a second support member to the inner surface of the back panel, attaching the upstream connector to the back panel by sliding a first mating hole defined in the upstream connector onto the first support member, and attaching the downstream connector to the back panel by a sliding a second mating hole defined in the downstream connector onto the second support member. The first support member is configured to support an upstream connector. The second support member is configured to support a downstream connector.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: April 23, 2024
    Assignee: Cilag GmbH International
    Inventors: Madeleine C. Jayme, Ryan M. Asher, William B. Weisenburgh, II, Joshua E. Henderson, Stephen D. Geresy, Stephen M. Leuck, John A. Weed, III, Brendan J. Oberkircher, Kristen G. Denzinger
  • Patent number: 11903634
    Abstract: A method for coagulating and dissecting tissue. The method includes measuring a tissue property and delivering multiple energy modalities to the tissue based on the tissue property. The energy modalities being delivered from a generator either alone or in combination.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: February 20, 2024
    Assignee: Cilag GmbH International
    Inventors: David C. Yates, Foster B. Stulen, Ashvani K. Madan, Benjamin J. Danziger, Eitan T. Wiener, Kristen G. Denzinger
  • Patent number: 11857252
    Abstract: A port module removably coupleable to an energy module of a module energy system is disclosed. The port module includes a light pipe and a receptacle defined by the light pipe. The receptacle is configured to receive a plug of an electrosurgical instrument therein. A seal is defined between the light pipe and the receptacle.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: January 2, 2024
    Assignee: Cilag GmbH International
    Inventors: Stephen D. Geresy, Stephen M. Leuck, Madeleine C. Jayme, Ryan M. Asher, John A. Weed, III, Kristen G. Denzinger
  • Patent number: 11844545
    Abstract: An ultrasonic device may include an ultrasonic system including a transducer coupled to an ultrasonic blade, A method of delivering energy to the device may include sensing a vessel contacting the blade, identifying that the vessel is calcified, and generating a warning. In some aspects, the method further includes disabling one or more activation functions of the blade. In another aspect, the method further includes generating a message to apply compression to the vessel for a predetermined period, disabling activation functions of the blade during compression, and enabling activation functions after the expiration of the compression period. In yet another aspect, the method includes applying a compressive clamp force to the calcified vessel by driving a clamp arm toward the blade, disabling activation functions of the blade during compression, and enabling the activation functions after adjusting the compressive force. An ultrasonic surgical instrument may effect the method.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: December 19, 2023
    Assignee: Cilag GmbH International
    Inventors: Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller
  • Patent number: 11839396
    Abstract: A method of controlling the application of energy to a radio frequency (RF) instrument based on a surgical technique may include activating the instrument for a first period T1, during which time a portion of an end effector contacts a tissue, plotting at least two electrical parameters associated with the tissue to classify an amount of the end effector in contact with the tissue, applying a classification algorithm to classify the amount of the end effector in contact with the tissue, and applying an amount of energy to the end effector based on the amount of the end effector in contact with the tissue. The parameters may include a minimum impedance of the tissue and an amount of time that the impedance slope is ˜0. The end effector may contact the tissue with a tip end or with an entire surface.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: December 12, 2023
    Assignee: Cilag GmbH International
    Inventors: Kristen G. Denzinger, Madeleine C. Jayme
  • Publication number: 20230355265
    Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Kristen G. Denzinger, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee
  • Publication number: 20230263548
    Abstract: A method for controlling an operation of an ultrasonic blade of an ultrasonic electromechanical system is disclosed. The method includes providing an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade via an ultrasonic waveguide; applying, by an energy source, a power level to the ultrasonic transducer; determining, by a control circuit coupled to a memory, a mechanical property of the ultrasonic electromechanical system; comparing, by the control circuit, the mechanical property with a reference mechanical property stored in the memory; and adjusting, by the control circuit, the power level applied to the ultrasonic transducer based on the comparison of the mechanical property with the reference mechanical property.
    Type: Application
    Filed: February 24, 2023
    Publication date: August 24, 2023
    Inventors: Frederick E. Shelton, IV, David C. Yates, Jason L. Harris, Kevin L. Houser, John E. Brady, Gregory A. Trees, Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller, Amrita S. Sawhney, Eric M. Roberson, Stephen M. Leuck, Brian D. Black, Jeffrey D. Messerly, Fergus P. Quigley, Tamara S. Widenhouse
  • Publication number: 20230233245
    Abstract: Various aspects of a generator, ultrasonic device, and method for estimating a state of an end effector of an ultrasonic device are disclsoed. The ultrasonic device includes an electromechanical ultrasonic system defined by a predetermined resonant frequency, including an ultrasonic transducer coupled to an ultrasonic blade. A control circuit measures a complex impedance of an ultrasonic transducer, wherein the complex impedance is defined as Z g ( t ) = V g t I g t . The control circuit receivs a complex impedance measurement data point and compares the complex impedance measurement data point to a data point in a reference complex impedance characteristic pattern. The control circuit then classifies the complex impedance measurement data point based on a result of the comparison analysis and assigns a state or condition of the end effector based on the result of the comparison analysis.
    Type: Application
    Filed: October 10, 2022
    Publication date: July 27, 2023
    Inventors: Cameron R. Nott, Foster B. Stulen, Fergus P. Quigley, John E. Brady, Gregory A. Trees, Amrita Singh Sawhney, Rafael J. Ruiz Ortiz, Patrick J. Scoggins, Kristen G. Denzinger, Craig N. Faller, Madeleine C. Jayme, Alexander R. Cuti, Matthew S. Schneider, Chad P. Boudreaux, Brian D. Black, Maxwell T. Rockman, Gregory D. Bishop, Frederick E. Shelton, IV, David C. Yates
  • Patent number: 11707293
    Abstract: A method of ultrasonic sealing includes activating an ultrasonic blade temperature sensing, measuring a first resonant frequency of an ultrasonic electromechanical system that includes a transducer coupled to the blade via a waveguide, making a first comparison between the measured first resonant frequency and a first predetermined resonant frequency, and adjusting a power level applied to the transducer based on the first comparison. The first predetermined frequency may correspond to an optimal tissue coagulation temperature. The method may further include measuring a second resonant frequency of the system, making a second comparison between the measured second frequency and a second predetermined frequency, and adjusting the power level based on the second comparison. The second predetermined frequency may correspond a melting point temperature of a clamp arm pad. An ultrasonic instrument and a generator may implement the method.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: July 25, 2023
    Assignee: Cilag GmbH International
    Inventors: Kristen G. Denzinger, Cameron R. Nott, Madeleine C. Jayme, Patrick J. Scoggins, Craig N. Faller
  • Publication number: 20230225754
    Abstract: A surgical apparatus includes a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and a rigidizing member. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide includes a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section includes a first member and a second member. The second member is longitudinally translatable relative to the first member. The end effector includes an ultrasonic blade in acoustic communication with the waveguide. The rigidizing member is configured to selectively engage at least a portion of the articulation section to thereby selectively provide rigidity to the articulation section.
    Type: Application
    Filed: February 17, 2023
    Publication date: July 20, 2023
    Inventors: William B. Weisenburgh, II, Barry C. Worrell, Jeffrey D. Messerly, Kristen L. D'Uva, Craig N. Faller, John B. Schulte, Kristen G. Denzinger, Joseph E. Hollo, Jason R. Sullivan, Brian D. Black, Frederick L. Estera, Stephen M. Leuck, Tylor C. Muhlenkamp, Gregory A. Trees, Gregory W. Johnson
  • Patent number: 11701139
    Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency. The control circuit controls the temperature of the ultrasonic blade based on the inferred temperature.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: July 18, 2023
    Assignee: Cilag GmbH International
    Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Kristen G. Denzinger, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee
  • Patent number: 11684401
    Abstract: A first module configured to engage with a second module in a stacked configuration to define a modular energy system is provided. The second module comprises a second bridge connector portion that comprises a second outer housing and a second electrical connection element. The first module comprises a first bridge connector portion comprising a first outer housing and a first electrical connection element. The first outer housing is configured to engage the second outer housing during assembly of the modular energy system prior to the first electrical connection element engaging the second electrical connection element.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: June 27, 2023
    Assignee: Cilag GmbH International
    Inventors: Brendan J. Oberkircher, Eitan T. Wiener, Wells D. Haberstich, Madeleine C. Jayme, Ryan M. Asher, Kristen G. Denzinger
  • Patent number: 11684400
    Abstract: A first module configured to engage with a second module in a stacked configuration to define a modular energy system is provided. The first module comprises a first bridge connector portion and a second conductive portion. The first bridge connector portion is configured to engage with a second bridge connector portion of the second module as the first module and the second module are engaged. The first conductive portion is configured to engage with a second conductive portion of the second module as the first module and the second module are engaged, prior to engagement between the first bridge connector portion and the second bridge connector portion.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: June 27, 2023
    Assignee: Cilag GmbH International
    Inventors: Madeleine C. Jayme, Kristen G. Denzinger, Joshua Henderson, Ryan M. Asher, William B. Weisenburgh, II, Amrita S. Sawhney
  • Patent number: 11684385
    Abstract: A surgical apparatus includes a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and a rigidizing member. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide includes a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section includes a first member and a second member. The second member is longitudinally translatable relative to the first member. The end effector includes an ultrasonic blade in acoustic communication with the waveguide. The rigidizing member is configured to selectively engage at least a portion of the articulation section to thereby selectively provide rigidity to the articulation section.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: June 27, 2023
    Assignee: Cilag GmbH International
    Inventors: William B. Weisenburgh, II, Barry C. Worrell, Jeffrey D. Messerly, Kristen L. D'Uva, Craig N. Faller, John B. Schulte, Kristen G. Denzinger, Joseph E. Hollo, Jason R. Sullivan, Brian D. Black, Frederick L. Estera, Stephen M. Leuck, Tylor C. Muhlenkamp, Gregory A. Trees, Gregory W. Johnson
  • Patent number: 11678901
    Abstract: An ultrasonic device may include an electromechanical ultrasonic system that includes an ultrasonic transducer coupled to an ultrasonic blade. A method of delivering energy to the ultrasonic device may include sensing a vessel type in contact with the blade, determining that the vessel type is either a vein or an artery, and delivering power to the transducer based on the vessel type. Power may be applied to the transducer at a power level P that differs from a nominal power level Pn for a period T that differs from a nominal period Tn based on the vessel. The power level P may be lower than Pn for a period T that is longer than Tn when the vessel is a vein. Alternatively, the power level P my be greater than Pn for a period T that is shorter than Tn when the vessel is an artery.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: June 20, 2023
    Assignee: Cilag GmbH International
    Inventors: Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller
  • Patent number: 11666353
    Abstract: A surgical instrument has an ultrasonic blade that connects to a distal end of an ultrasonic waveguide. A clamp arm assembly is moveable from an opened position for receiving a tissue, toward a closed position for clamping the tissue. A clamp arm actuator connected to the clamp arm assembly directs the clamp arm assembly from the opened position toward the closed position. An outer sheath surrounds at least a portion of the ultrasonic waveguide. The outer sheath includes a cover removably received against a sheath body, and a sheath securement feature able to detachably couple the cover to the sheath body such that the cover can be detached from the sheath body for accessing the ultrasonic waveguide within the outer sheath.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: June 6, 2023
    Assignee: Cilag GmbH International
    Inventors: Kristen G. Denzinger, Qinlin Gu, Wei Guo, Timothy S. Holland, Patrick J. Minnelli, Daniel J. Mumaw, Yachuan Yu, Monica Rivard
  • Publication number: 20230112022
    Abstract: An apparatus comprises a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and an articulation drive assembly. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide comprises a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section comprises a plurality of body portions aligned along the longitudinal axis and a flexible locking member. The flexible locking member is operable to secure the body portions in relation to each other and in relation to the shaft. The end effector comprises an ultrasonic blade in acoustic communication with the waveguide. The articulation drive assembly is operable to drive articulation of the articulation section to thereby deflect the end effector from the longitudinal axis.
    Type: Application
    Filed: October 12, 2022
    Publication date: April 13, 2023
    Inventors: Barry C. Worrell, Benjamin J. Danziger, Benjamin D. Dickerson, Brian D. Black, Cara L. Shapiro, Charles J. Scheib, Craig N. Faller, Daniel J. Mumaw, David J. Cagle, David T. Martin, David A. Monroe, Disha V. Estera, Foster B. Stulen, Frederick L. Estera, Geoffrey S. Strobl, Gregory W. Johnson, Jacob S. Gee, Jason R. Sullivan, Jeffrey D. Messerly, Jeffrey S. Swayze, John A. Hibner, John B. Schulte, Joseph E. Hollo, Kristen G. Denzinger, Kristen L. D'Uva, Matthew C. Miller, Michael R. Lamping, Richard W. Timm, Rudolph H. Nobis, Ryan M. Asher, Stephen M. Leuck, Tylor C. Muhlenkamp, William B. Weisenburgh, II, William A. Olson
  • Patent number: 11612408
    Abstract: Various systems and methods for determining the composition of tissue via an ultrasonic surgical instrument are disclosed. A control circuit can be configured to monitor the change in resonant frequency of an ultrasonic electromechanical system of the ultrasonic surgical instrument as the ultrasonic blade oscillates against a tissue and determine the composition of the tissue accordingly. In some aspects, the control circuit can be configured to modify the operation of the ultrasonic electromechanical system or other operational parameters of the ultrasonic surgical instrument according to the detected tissue composition.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: March 28, 2023
    Assignee: Cilag GmbH International
    Inventors: David C. Yates, Jason L. Harris, Frederick E. Shelton, IV, Kevin L. Houser, John E. Brady, Gregory A. Trees, Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller, Amrita S. Sawhney, Eric M. Roberson, Stephen M. Leuck, Brian D. Black
  • Patent number: 11602364
    Abstract: A surgical instrument includes an ultrasonic waveguide extending through a body assembly. An ultrasonic blade connects to the ultrasonic waveguide. A clamp arm assembly of the surgical instrument is able to move from an opened position for receiving a tissue toward a closed position for clamping the tissue. The clamp arm assembly includes a clamp body and a clamp pad facing the ultrasonic blade. A clamp arm actuator of the surgical instrument is able to move from a first position toward a second position to direct the clamp arm assembly from the opened position toward the closed position. A modular coupling of the surgical instrument connects to the clamp pad such that at least the clamp pad can be disconnected relative to the ultrasonic blade for replacement thereof.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: March 14, 2023
    Assignee: Cilag GmbH International
    Inventors: Ryan M. Asher, Gregory D. Bishop, Brian D. Black, Chad P. Boudreaux, David J. Cagle, William E. Clem, Joseph Dennis, Kristen G. Denzinger, Benjamin D. Dickerson, Kevin M. Fiebig, Ellen Burkart, Christina M. Hough, John V. Hunt, Cody R. Jackson, Cory G. Kimball, Jeffrey D. Messerly, Gabriel I. Myers, Ion V. Nicolaescu, William A. Olson, Candice Otrembiak, John K. Swain, Gregory A. Trees, John A. Weed, III, William B. Weisenburgh, II, Eitan T. Wiener, Barry C. Worrell, David C. Yates, Monica L. Zeckel
  • Patent number: 11589888
    Abstract: A method for controlling an operation of an ultrasonic blade of an ultrasonic electromechanical system is disclosed. The method includes providing an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade via an ultrasonic waveguide; applying, by an energy source, a power level to the ultrasonic transducer; determining, by a control circuit coupled to a memory, a mechanical property of the ultrasonic electromechanical system; comparing, by the control circuit, the mechanical property with a reference mechanical property stored in the memory; and adjusting, by the control circuit, the power level applied to the ultrasonic transducer based on the comparison of the mechanical property with the reference mechanical property.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: February 28, 2023
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, David C. Yates, Jason L. Harris, Kevin L. Houser, John E. Brady, Gregory A. Trees, Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller, Amrita S. Sawhney, Eric M. Roberson, Stephen M. Leuck, Brian D. Black, Fergus P. Quigley, Tamara Widenhouse