Patents by Inventor Kristen Steinbrecher

Kristen Steinbrecher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9944758
    Abstract: A hydrosilylation process is used to prepare a clustered functional polyorganosiloxane. The clustered functional polyorganosiloxane comprises a reaction product of a reaction of a) a polyorganosiloxane having an average, per molecule, of at least 2 aliphatically unsaturated organic groups; b) a polyorganohydrogensiloxane having an average of 4 to 15 silicon atoms per molecule; and c) a reactive species having, per molecule at least 1 aliphatically unsaturated organic group and 1 or more radical curable groups selected from an acrylate group and a methacrylate group; in the presence of d) a hydrosilylation catalyst, and e) an isomer reducing agent. The weight percent of silicon bonded hydrogen atoms in component b) divided by the weight percent of aliphatically unsaturated organic groups in component a) (the SiHb/Via ratio) ranges from 4/1 to 20/1. The resulting clustered functional polyorganosiloxane is useful in a curable silicone composition for electronics applications.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: April 17, 2018
    Assignee: DOW CORNING CORPORATION
    Inventors: Jing Jiang, Kristen Steinbrecher, Yin Tang, James Tonge, Lauren Tonge, Afrooz Zarisfi
  • Patent number: 9862867
    Abstract: An alkoxy-functional organopolysiloxane resin and polymer is disclosed that comprises the reaction product of a reaction of (i) an alkenyl-functional siloxane resin comprising R3SiO1/2 units and SiO4/2 units; (ii) an alkoxysilane-functional organosiloxane compound having at least one silicon-bonded hydrogen atom at a molecular terminal; (iii) an endcapper according to the formula to the formula R23Si—(R22SiO)s—SiR22H or R23Si—(R22SiO)t—(HR2SiO)—SiR23, or combinations thereof; and (iv) a polyorganosiloxane having an average, per molecule, of at least 2 aliphatically unsaturated organic groups in the presence of a (v) hydrosilylation catalyst. In this alkoxy-functional organopolysiloxane resin and polymer, each R2 is independently a hydrocarbon radical and the subscripts s and t independently have values ranging from 0 to 10.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: January 9, 2018
    Assignee: DOW CORNING CORPORATION
    Inventors: Glenn Gordon, Kristen Steinbrecher, James Tonge, Afrooz Zarisfi
  • Patent number: 9670392
    Abstract: A stable thermal radical curable silicone composition is provided that comprises (I) a clustered functional polyorganopolysiloxane having one or more radical curable groups selected from an acrylate group and a methacrylate group; (II) a reactive resin and polymer; (III) a radical initiator; (IV) a moisture cure initiator; and (V) a crosslinker. The reactive resin and polymer includes (a) an organopolysiloxane polymer and (b) an alkoxy-functional organopolysiloxane resin. The alkoxy-functional organopolysiloxane resin comprises the reaction product of a reaction of (i) an alkenyl-functional siloxane resin, (ii) an alkoxysilane-functional organosiloxane, and (iii) an endcapper in the presence of (iv) hydrosilylation catalyst. The stable thermal radical curable silicone composition can be utilized for electronics applications.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: June 6, 2017
    Assignee: DOW CORNING CORPORATION
    Inventors: Kent Larson, Kristen Steinbrecher, James Tonge, Afrooz Zarisfi
  • Publication number: 20160197025
    Abstract: A silicone composition contains I) a shrink additive and II) a curable polyorganosiloxane composition. A method for fabricating an electronic device includes the steps of: 1) interposing the silicone composition between an IHS and a substrate, 2) curing the curable polyorganosiloxane composition to form a cured silicone product, and 3) removing the shrink additive during and/or after step 2), thereby compressing the IHS to the substrate. Compressing occurs as thickness of the cured silicone product decreases, as compared to thickness of the silicone composition interposed in step 1).
    Type: Application
    Filed: October 29, 2013
    Publication date: July 7, 2016
    Inventors: Dorab Edul Bhagwagar, Lyndon Larson, Kristen Steinbrecher, James Tonge
  • Publication number: 20160009865
    Abstract: A hydrosilylation process is used to prepare a clustered functional polyorganosiloxane. The clustered functional polyorganosiloxane comprises a reaction product of a reaction of a) a polyorganosiloxane having an average, per molecule, of at least 2 ahphatically unsaturated organic groups; b) a polyorganohydrogensiloxane having an average of 4 to 15 silicon atoms per molecule; and c) a reactive species having, per molecule at least 1 aliphatically unsaturated organic group and 1 or more radical curable groups selected from an acrylate group and a methacrylate group; in the presence of d) a hydrosilylation catalyst, and e) an isomer reducing agent. The weight percent of silicon bonded hydrogen atoms in component b) divided by the weight percent of aliphatically unsaturated organic groups in component a) (the SiHb/Via ratio) ranges from 4/1 to 20/1. The resulting clustered functional polyorganosiloxane is useful in a curable silicone composition for electronics applications.
    Type: Application
    Filed: February 10, 2014
    Publication date: January 14, 2016
    Inventors: Jing Jiang, Kristen Steinbrecher, Yin Tang, James Tonge, Lauren Tonge, Afrooz Zarisfi
  • Publication number: 20160002513
    Abstract: An alkoxy-functional organopolysiloxane resin and polymer is disclosed that comprises the reaction product of a reaction of (i) an alkenyl-functional siloxane resin comprising R3SiO1/2 units and SiO4/2 units; (ii) an alkoxysilane-functional organosiloxane compound having at least one silicon-bonded hydrogen atom at a molecular terminal; (iii) an endcapper according to the formula to the formula R23Si—(R22SiO)s—SiR22H or R23Si—(R22SiO)t—(HR2SiO)—SiR23, or combinations thereof; and (iv) a polyorganosiloxane having an average, per molecule, of at least 2 aliphatically unsaturated organic groups in the presence of a (v) hydrosilylation catalyst. In this alkoxy-functional organopolysiloxane resin and polymer, each R2 is independently a hydrocarbon radical and the subscripts s and t independently have values ranging from 0 to 10.
    Type: Application
    Filed: February 10, 2014
    Publication date: January 7, 2016
    Inventors: Glenn Gordon, Kristen Steinbrecher, James Tonge, Afrooz Zarisfi
  • Publication number: 20150376481
    Abstract: A stable thermal radical curable silicone composition is provided that comprises (I) a clustered functional polyorganopolysiloxane having one or more radical curable groups selected from an acrylate group and a methacrylate group; (II) a reactive resin and polymer; (III) a radical initiator; (IV) a moisture cure initiator; and (V) a crosslinker. The reactive resin and polymer includes (a) an organopolysiloxane polymer and (b) an alkoxy-functional organopolysiloxane resin. The alkoxy-functional organopolysiloxane resin comprises the reaction product of a reaction of (i) an alkenyl-functional siloxane resin, (ii) an alkoxysilane-functional organosiloxane, and (iii) an endcapper in the presence of (iv) hydrosilylation catalyst. The stable thermal radical curable silicone composition can be utilized for electronics applications.
    Type: Application
    Filed: February 10, 2014
    Publication date: December 31, 2015
    Inventors: Kent Larson, Kristen Steinbrecher, James Tonge, Afrooz Zarisfi