Patents by Inventor Kristi A. Fjare

Kristi A. Fjare has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8552230
    Abstract: Materials and processes for the conversion of carbohydrates and polyols to gasoline boiling range hydrocarbons. Carbohydrates and polyols are reacted in the presence of modified zeolite catalysts to form a reaction product containing non-aromatic and aromatic gasoline boiling range hydrocarbons.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: October 8, 2013
    Assignee: Phillips 66 Company
    Inventors: Jianhua Yao, Edward L. Sughrue, II, Yun Bao, Kristi Fjare, TiePan Shi
  • Publication number: 20130237728
    Abstract: Oxygenate feedstocks derived from biomass are converted to a variety of fuels including gas, jet, and diesel fuel range hydrocarbons. General methods are provided including hydrolysis, dehydration, hydrogenation, condensation, oligomerization, and/or a polishing hydrotreating.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Edgar LOTERO, Kristi FJARE, TiePan SHI, Sourabh PANSARE, Yun BAO
  • Publication number: 20130144098
    Abstract: A single pass direct conversion of biomass derived oxygenates to longer chain hydrocarbons is described. The longer chain hydrocarbons include higher naphthene content which is quite useful in the distillate range fuels or more particularly, the jet and diesel range fuels. Naphthenes help the biomass derived hydrocarbons meet product specifications for jet and diesel while really helping cold flow properties.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 6, 2013
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Sourabh S. Pansare, Brian C. Dunn, Edgar Lotero, Alexandru Platon, Leendert Arie Gerritsen, Stephen Marshall, Kristi A. Fjare, Ronald E. Brown
  • Publication number: 20130144090
    Abstract: A single pass direct conversion of biomass derived oxygenates to longer chain hydrocarbons is described. The longer chain hydrocarbons include higher naphthene content which is quite useful in the distillate range fuels or more particularly, the jet and diesel range fuels. Naphthenes help the biomass derived hydrocarbons meet product specifications for jet and diesel while really helping cold flow properties.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 6, 2013
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Sourabh S. Pansare, Brian C. Dunn, Edgar Lotero, Alexandru Platon, Leendert Arie Gerritsen, Stephen Marshall, Kristi A. Fjare, Ronald E. Brown
  • Publication number: 20130144091
    Abstract: A single pass direct conversion of biomass derived oxygenates to longer chain hydrocarbons is described. The longer chain hydrocarbons include higher naphthene content which is quite useful in the distillate range fuels or more particularly, the jet and diesel range fuels. Naphthenes help the biomass derived hydrocarbons meet product specifications for jet and diesel while really helping cold flow properties.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 6, 2013
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Sourabh S. Pansare, Brian C. Dunn, Edgar Lotero, Alexandru Platon, Leendert Arie Gerritsen, Stephen Marshall, Kristi A. Fjare, Ronald E. Brown
  • Publication number: 20130144094
    Abstract: A single pass direct conversion of biomass derived oxygenates to longer chain hydrocarbons is described. The longer chain hydrocarbons include higher naphthene content which is quite useful in the distillate range fuels or more particularly, the jet and diesel range fuels. Naphthenes help the biomass derived hydrocarbons meet product specifications for jet and diesel while really helping cold flow properties.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 6, 2013
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Sourabh S. Pansare, Brian C. Dunn, Edgar Lotero, Alexandru Platon, Leendert Arie Gerritsen, Stephen Marshall, Kristi A. Fjare, Ronald E. Brown
  • Publication number: 20130144089
    Abstract: This invention is a method for converting biomass derived pyrolysis oil (bio-oil) into materials that will be more useful for transportation fuels including the following two steps: 1) solubilizing and extracting bio-oil oxygenates, and 2) zeolite catalyzed hydrogenation of the oxygenates into renewable fuel range materials.
    Type: Application
    Filed: December 6, 2011
    Publication date: June 6, 2013
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Kristi A. FJARE, Tie-Pan SHI, Edward L. SUGHRUE, II, Jianhua YAO
  • Publication number: 20130014431
    Abstract: A fuel composition and the process of making the fuel composition are described. More specifically, a novel biomass derived low sulfur bunker fuels composition and the method of making thereof. Embodiment of the invention discloses a novel low sulfur bunker fuels composition derived from blending various bio-oil with other heavy residual fuel oils and distillates where final sulfur content and carbon intensity is controlled by the ratio of bio-oil to other heavy residual fuel oils and distillates. Embodiment of the invention also discloses a process of making a novel biomass derived low sulfur bunker fuels by blending various bio-oil with other heavy residual fuel oils and distillates.
    Type: Application
    Filed: May 21, 2012
    Publication date: January 17, 2013
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Hong Jin, Cory B. Phillips, Daren E. Daugaard, Kristi A. Fjare, Robert A. Levine
  • Patent number: 8183422
    Abstract: Described is a process for converting pyrolysis oil obtained by pyrolysis of biomass into fuel range hydrocarbon by alcoholysis of pyrolysis oil with subsequent hydrotreatment. A straightforward methodology to prepare upgradeable pyrolysis oil via alcoholysis. A method hydrotreating technology for oxygen removal and hydrocarbon production. The resulting hydrocarbon products are 100% fungible with conventional transportation fuels.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: May 22, 2012
    Assignee: ConocoPhillips Company
    Inventors: Edgar Lotero Alegria, Kristi Fjare, Daren Daugaard, Alexandru Platon
  • Publication number: 20120095274
    Abstract: Technologies to convert biomass to liquid hydrocarbon fuels are currently being developed to decrease our carbon footprint and increase use of renewable fuels. Since sugars/sugar derivatives from biomass have high oxygen content and low hydrogen content, coke becomes an issue during zeolite upgrading to liquid hydrocarbon fuels. A self-sustainable process was designed to reduce the coke by co-feeding sugars/sugar derivatives with the paraffin products from hydrogenation of sugars/sugar derivatives. Paraffins without complete conversion result in products with less aromatics and relatively low density compared with the products directly from zeolite upgrading. Thus, the process is more economically favorable.
    Type: Application
    Filed: August 22, 2011
    Publication date: April 19, 2012
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Yun BAO, Edward L. SUGHRUE, II, Jianhua YAO, TiePan SHI, Kristi A. FJARE, Lisa L. MYERS
  • Publication number: 20120035404
    Abstract: The present invention relates to a process for converting pyrolysis oil obtained by pyrolysis of biomass into fuel range hydrocarbon by alcoholysis of pyrolysis oil with subsequent hydrotreatment. The current invention provides straightforward methodology to prepare upgradable pyrolysis oil via alcoholysis. The invention uses hydrotreating technology for oxygen removal and hydrocarbon production. The resulting hydrocarbon products are 100% fungible with conventional transportation fuels.
    Type: Application
    Filed: October 17, 2011
    Publication date: February 9, 2012
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Edgar Lotero ALEGRIA, Kristi FJARE, Daren DAUGAARD, Alexandru PLATON
  • Publication number: 20120023810
    Abstract: This invention relates to a process for production of transportation fuels from biomass. More particularly, this invention relates to a process for using solvent to remove metal impurities and high molecular weight components from biomass derived biocrude to prevent potential catalyst poisoning and catalyst bed plugging in biocrude-to-transportation fuel upgrading process.
    Type: Application
    Filed: July 7, 2011
    Publication date: February 2, 2012
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Kristi FJARE, Jianhua YAO, Edward L. SUGHRUE, Jaehoon BAE, TiePan SHI, Yun BAO, Edgar LOTERO
  • Publication number: 20110263916
    Abstract: Technologies to convert biomass to liquid hydrocarbon fuels are currently being developed to decrease our carbon footprint and increase use of renewable fuels. Since sugars/sugar derivatives from biomass have high oxygen content and low hydrogen content, coke becomes an issue during zeolite upgrading to liquid hydrocarbon fuels. A process was designed to reduce the coke by co-feeding sugars/sugar derivatives with a saturated recycle stream containing hydrogenated products.
    Type: Application
    Filed: April 19, 2011
    Publication date: October 27, 2011
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Yun BAO, Edward L. SUGHRUE, II, Jianhua YAO, TiePan SHI, Kristi A. FJARE, Lisa L. MYERS, Ronald E. BROWN
  • Publication number: 20110152513
    Abstract: Materials and processes for the conversion of carbohydrates and polyols to gasoline boiling range hydrocarbons. Carbohydrates and polyols are reacted in the presence of modified zeolite catalysts to form a reaction product containing non-aromatic and aromatic gasoline boiling range hydrocarbons.
    Type: Application
    Filed: October 26, 2010
    Publication date: June 23, 2011
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Jianhua YAO, Edward L. SUGHRUE, II, Yun BAO, Kristi FJARE, TiePan SHI
  • Publication number: 20110144396
    Abstract: The present invention relates to a process for converting biomass to hydrocarbons and oxygenates. The process may include providing a biomass feedstock and de-oxygenating the biomass feedstock to form a solid-intermediate. The process may further include liquefaction of the solid intermediate, which may be carried out either by rapid heating followed by condensation or by liquefying by applying high pressure. The liquefaction of the solid intermediate may produce a mixture of hydrocarbons and oxygenates, which is generally termed as biocrude. Further, the biocrude is processed by one or more refining means for production of hydrocarbons that can be used as fuel.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 16, 2011
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Edgar LOTERO, Alexandru PLATON, Daren E. DAUGAARD, Kristi FJARE
  • Patent number: 7449496
    Abstract: A stabilized catalyst support having improved hydrothermal stability, catalyst made therefrom, and method for producing hydrocarbons from synthesis gas using said catalyst. The stabilized support is made by a method comprising treating a crystalline hydrous alumina precursor in contact with at least one structural stabilizer or compound thereof. The crystalline hydrous alumina precursor preferably includes an average crystallite size selected from an optimum range delimited by desired hydrothermal resistance and desired porosity. The crystalline hydrous alumina precursor preferably includes an alumina hydroxide, such as crystalline boehmite, crystalline bayerite, or a plurality thereof differing in average crystallite sizes by at least about 1 nm. The crystalline hydrous alumina precursor may be shaped before or after contact with the structural stabilizer or compound thereof. The treating includes calcining at 450° C. or more.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: November 11, 2008
    Assignee: ConocoPhillips Company
    Inventors: Yaming Jin, Kandaswamy Jothimurugesan, Kristi A. Fjare, J. Dale Ortego, Jr., Beatrice C. Ortego, Rafael L. Espinoza
  • Patent number: 7375143
    Abstract: Embodiments of the invention relate to processes and apparatus for the washing and recovery of metal-containing catalyst solids in a form suitable for reclamation. More specifically, a catalyst recovery process comprises removing an organic residue with a washing medium from a metal-containing catalyst solids, recovering washed solids, and treating the washed solids under oxidative conditions to form non-reactive solids. The treatment oxidative conditions may be effective to convert the metal(s) into an oxide form and/or may facilitate the removal of remaining organic residue from the washed solids. The treatment of the washed solids may comprise calcination. In some embodiments, the metal-containing catalyst solids may be recovered from a slurry stream, and the process further comprises passing the slurry stream though a separation unit to obtain a catalyst-enriched retentate slurry.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: May 20, 2008
    Assignee: ConocoPhillips Company
    Inventors: Sara I. Kopponen, Ralph T. Goodwin, Kristi A. Fjare, Barbara A. Belt, Brian J. Levitt, Kindra Snow-McGregor, Richard J. Wissbaum, Mariella L. Raven, Frank B. Walter
  • Patent number: 7341976
    Abstract: A stabilized catalyst support having improved hydrothermal stability, catalyst made therefrom, and method for producing hydrocarbons from synthesis gas using said catalyst. The stabilized support is made by a method comprising treating a crystalline hydrous alumina precursor in contact with at least one structural stabilizer or compound thereof. The crystalline hydrous alumina precursor preferably includes an average crystallite size selected from an optimum range delimited by desired hydrothermal resistance and desired porosity. The crystalline hydrous alumina precursor preferably includes an alumina hydroxide, such as crystalline boehmite, crystalline bayerite, or a plurality thereof differing in average crystallite sizes by at least about 1 nm. The crystalline hydrous alumina precursor may be shaped before or after contact with the structural stabilizer or compound thereof. The treating includes calcining at 450° C. or more.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: March 11, 2008
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Kandaswamy Jothimurugesan, Yaming Jin, J. Dale Ortego, Jr., Kristi A. Fjare, Beatrice C. Ortego
  • Publication number: 20080039539
    Abstract: A stabilized catalyst support having improved hydrothermal stability, catalyst made therefrom, and method for producing hydrocarbons from synthesis gas using said catalyst. The stabilized support is made by a method comprising treating a crystalline hydrous alumina precursor in contact with at least one structural stabilizer or compound thereof. The crystalline hydrous alumina precursor preferably includes an average crystallite size selected from an optimum range delimited by desired hydrothermal resistance and desired porosity. The crystalline hydrous alumina precursor preferably includes an alumina hydroxide, such as crystalline boehmite, crystalline bayerite, or a plurality thereof differing in average crystallite sizes by at least about 1 nm. The crystalline hydrous alumina precursor may be shaped before or after contact with the structural stabilizer or compound thereof. The treating includes calcining at 450° C. or more.
    Type: Application
    Filed: October 19, 2007
    Publication date: February 14, 2008
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Rafael Espinoza, Kandaswamy Jothimurugesan, Yaming Jin, J. Ortego, Kristi Fjare, Beatrice Ortego
  • Publication number: 20060135631
    Abstract: Embodiments of the invention relate to processes and apparatus for the washing and recovery of metal-containing catalyst solids in a form suitable for reclamation. More specifically, a catalyst recovery process comprises removing an organic residue with a washing medium from a metal-containing catalyst solids, recovering washed solids, and treating the washed solids under oxidative conditions to form non-reactive solids. The treatment oxidative conditions may be effective to convert the metal(s) into an oxide form and/or may facilitate the removal of remaining organic residue from the washed solids. The treatment of the washed solids may comprise calcination. In some embodiments, the metal-containing catalyst solids may be recovered from a slurry stream, and the process further comprises passing the slurry stream though a separation unit to obtain a catalyst-enriched retentate slurry.
    Type: Application
    Filed: November 22, 2005
    Publication date: June 22, 2006
    Applicant: ConocoPhillips Company
    Inventors: Sara Kopponen, Ralph Goodwin, Kristi Fjare, Barbara Belt, Brian Levitt, Kindra Snow-McGregor, Richard Wissbaum, Mariella Raven, Frank Walter