Patents by Inventor Kristiaan De Greve

Kristiaan De Greve has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230280208
    Abstract: Example embodiments relate to detectors for detecting electromagnetic radiation. One embodiment includes a detector for detecting electromagnetic radiation spanning a range from a first wavelength to a second wavelength. The detector includes an array of funnel elements for propagating electromagnetic radiation from a second plane towards a first plane. Each of the funnel elements includes an entrance end and an exit end. The entrance ends of the array of funnel elements define the second plane. The entrance end is larger than half of the second wavelength in a medium from which the electromagnetic radiation enters the detector. The exit end is smaller than half of the first wavelength of in the medium. The detector also includes an array of photosensitive elements for detecting electromagnetic radiation incident on the array of photosensitive elements. Each funnel element is associated with a photosensitive element. The array of photosensitive elements defines the first plane.
    Type: Application
    Filed: June 11, 2021
    Publication date: September 7, 2023
    Inventors: Jan Genoe, Robert Gehlhaar, Kristiaan De Greve
  • Patent number: 9702900
    Abstract: A method for performing sub-nanometer three-dimensional magnetic resonance imaging of a sample under ambient conditions using a diamond having at least one shallowly planted nitrogen-vacancy (NV) center. A driving radio-frequency (RF) signal and a microwave signal are applied to provide independent control of the NV spin and the target dark spins. A magnetic-field gradient is applied to the sample with a scanning magnetic tip to provide a narrow spatial volume in which the target dark electronic spins are on resonance with the driving RF field. The sample is controllably scanned by moving the magnetic tip to systematically bring non-resonant target dark spins into resonance with RF signal. The dark spins are measured and mapped by detecting magnetic resonance of said nitrogen-vacancy center at each of said different magnetic tip positions. The dark-spin point-spread-function for imaging the dark spins is directly measured by the NV center.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: July 11, 2017
    Assignees: President and Fellows of Harvard College, University College London
    Inventors: Amir Yacoby, Michael Grinolds, Marc Warner, Kristiaan De Greve, Yuliya Dovzhenko
  • Publication number: 20170038411
    Abstract: A method for performing sub-nanometer three-dimensional magnetic resonance imaging of a sample under ambient conditions using a diamond having at least one shallowly planted nitrogen-vacancy (NV) center. A driving radio-frequency (RF) signal and a microwave signal are applied to provide independent control of the NV spin and the target dark spins. A magnetic-field gradient is applied to the sample with a scanning magnetic tip to provide a narrow spatial volume in which the target dark electronic spins are on resonance with the driving RF field. The sample is controllably scanned by moving the magnetic tip to systematically bring non-resonant target dark spins into resonance with RF signal. The dark spins are measured and mapped by detecting magnetic resonance of said nitrogen-vacancy center at each of said different magnetic tip positions. The dark-spin point-spread-function for imaging the dark spins is directly measured by the NV center.
    Type: Application
    Filed: May 26, 2015
    Publication date: February 9, 2017
    Inventors: Amir Yacobi, Michael Grinolds, Marc Warner, Kristiaan De Greve, Yuliya Dovzhenko