Patents by Inventor Kristian Kristoffersen

Kristian Kristoffersen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10321999
    Abstract: The present disclosure includes a device for reshaping a heart valve. The device may include a central ring about a central axis and a plurality of arms coupled to the central ring, each of the arms coupled to the central ring at a pivot point at a first end of the arm, the arm comprising an attachment feature at a second point along the arm, the pivot point configured to allow movement of the arm about the pivot point through a plane extending radially from the central axis through the arm. Additionally, the plurality of arms may be contractable and may be extendable such that the hooks extend beyond a dilated heart valve. The present disclosure also includes associated methods and systems.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: June 18, 2019
    Assignee: Millipede, Inc.
    Inventors: Richard Glenn, Kristian Kristoffersen, Richard Klein, Randall Lashinski
  • Publication number: 20180228610
    Abstract: Systems, devices and methods related to various heart valve implants and for delivery of those implants are described. The implants may be used to re-size a native valve annulus or to replace a native heart valve. The implants include a re-sizable frame having angled struts. The implant is secured to tissue with anchors that can rotate without axial advancement to engage tissue while drawing the implant closer to the tissue. Collars are used to decrease the angle between struts of a frame to contract the implant. The implants can include a rotatable shaft, such as a threaded shaft, located internally to an axially translatable collar. Rotation of the shaft transmits force to the collar to cause the collar to translate axially, closing the angle of adjacent struts and decreasing the width of the implant and thus of the annulus. The implants can be delivered, secured and contracted via a catheter. The implants are repositionable and retrievable via catheter.
    Type: Application
    Filed: February 9, 2018
    Publication date: August 16, 2018
    Inventors: Randall Lashinski, Kristian Kristoffersen, Matthew Rust, Richard Glenn, Michael J. Lee, Patrick E. Macaulay
  • Publication number: 20170135816
    Abstract: Systems, devices and methods related to various heart valve implants and for delivery of those heart valve implants are described. The implants may be used to re-size a native valve annulus or to replace a native heart valve. The implants include a re-sizable frame having angled struts. Anchors secure the implant to tissue and collars are used to decrease the angle between the struts and contract the frame. The implant thus expands from a first size inside of a delivery catheter, to a second and larger deployed size inside the heart to engage and anchor with the tissue, and then to a third and contracted size to re-size the annulus and/or provide a secure fit for a replacement heart valve. Various delivery systems including imaging capabilities for precise delivery, positioning and anchoring of the various implants are further described.
    Type: Application
    Filed: November 15, 2016
    Publication date: May 18, 2017
    Inventors: Randall Lashinski, Kristian Kristoffersen, Matthew Rust, Richard Glenn, Terry Wayne Daniels, Michael Lee, Patrick Macaulay
  • Publication number: 20170086974
    Abstract: Methods related to delivery of various heart valve implants are described. The implant may be delivered using an ultrasound imaging delivery system. The ultrasound imaging delivery system may be used to deliver a variety of different devices, including mitral valve reshaping devices, mitral valve replacement valves, and others. A deployment catheter carrying an implant having a tissue anchor is advanced to a deployment site in a heart. An imaging element is positioned adjacent the implant and a relationship between the tissue anchor and an anatomical landmark in the heart is visualized. The implant is then attached by driving the tissue anchor into tissue in the heart.
    Type: Application
    Filed: September 29, 2016
    Publication date: March 30, 2017
    Inventors: Randall Lashinski, Kristian Kristoffersen, Matthew Rust, Richard Glenn, Michael Lee, Patrick Macaulay
  • Publication number: 20160038285
    Abstract: The present disclosure includes a device for reshaping a heart valve. The device may include a central ring about a central axis and a plurality of arms coupled to the central ring, each of the arms coupled to the central ring at a pivot point at a first end of the arm, the arm comprising an attachment feature at a second point along the arm, the pivot point configured to allow movement of the arm about the pivot point through a plane extending radially from the central axis through the arm. Additionally, the plurality of arms may be contractable and may be extendable such that the hooks extend beyond a dilated heart valve. The present disclosure also includes associated methods and systems.
    Type: Application
    Filed: March 13, 2014
    Publication date: February 11, 2016
    Inventors: Richard Glenn, Kristian Kristoffersen, Richard Klein, Randall Lashinski
  • Publication number: 20060095004
    Abstract: The present invention provides a deflectable catheter-based system for assisting in the delivery of therapeutic agents, cellular materials and the like to one or more sites in a target body tissue. The system provides for one or more injections to a predetermined needle insertion depth with a single core needle that can be advanced and retracted from the tip of the catheter. The catheter assembly includes a handle subassembly having a mechanism for setting and limiting the depth of insertion of the needle, a slide for moving the injection needle between retracted and extended positions, a return spring for biasing the needle to the retracted position, and a modified pulley mechanism for compensating for catheter shaft compression when the catheter is deflected.
    Type: Application
    Filed: November 10, 2005
    Publication date: May 4, 2006
    Inventors: Michael Lee, Kristian Kristoffersen