Patents by Inventor Kristin J. Fencil

Kristin J. Fencil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190203224
    Abstract: The subject invention relates in part to Cry34Ab/35Ab in combination with Cry3Aa. The subject invention relates in part to the surprising discovery that combinations of Cry34Ab/Cry35Ab and Cry3Aa are useful for preventing development of resistance (to either insecticidal protein system alone) by a corn rootworm (Diabrotica spp.) population. As one skilled in the art will recognize with the benefit of this disclosure, corn plants producing these insecticidal Cry proteins will be useful to mitigate concern that a corn rootworm population could develop that would be resistant to either of these insecticidal protein systems alone. Plants (and acreage planted with such plants) that produce these two insecticidal protein systems are included within the scope of the subject invention.
    Type: Application
    Filed: March 15, 2019
    Publication date: July 4, 2019
    Applicant: DOW AGROSCIENCES LLC
    Inventors: Kenneth E. Narva, Thomas Meade, Kristin J. Fencil, Huarong Li, Timothy D. Hey, Aaron T. Woosley, Monica Britt Olson
  • Patent number: 9796983
    Abstract: The subject invention relates in part to Cry3Aa in combination with Cry6Aa. The subject invention relates in part to the surprising discovery that combinations of Cry3Aa and Cry6Aa are useful for preventing development of resistance (to either insecticidal protein system alone) by a corn rootworm (Diabrotica spp.) population. Included within the subject invention are plants producing these insecticidal Cry proteins, which are useful to mitigate concern that a corn rootworm population could develop that would be resistant to either of these insecticidal protein systems alone. The subject invention also relates in part to combinations of Cry3Aa and Cry6Aa proteins “triple-stacked” or “multi-stacked” with another insecticidal protein(s) such as a Cry6Aa protein or binary Cry34/35 proteins. Thus, such embodiments target rootworms with three modes of action. Transgenic plants, including corn, comprising a cry6Aa gene and a cry3Aa gene are included within the scope of the subject invention.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: October 24, 2017
    Assignee: Dow AgroSciences LLC
    Inventors: Kenneth E. Narva, Thomas Meade, Kristin J. Fencil, Huarong Li, Timothy D. Hey, Aaron T. Woosley, Monica B. Olson
  • Publication number: 20130263331
    Abstract: The subject invention relates in part to Cry3Aa in combination with Cry6Aa. The subject invention relates in part to the surprising discovery that combinations of Cry3Aa and Cry6Aa are useful for preventing development of resistance (to either insecticidal protein system alone) by a corn rootworm (Diabrotica spp.) population. Included within the subject invention are plants producing these insecticidal Cry proteins, which are useful to mitigate concern that a corn rootworm population could develop that would be resistant to either of these insecticidal protein systems alone. Plants (and acreage planted with such plants) that produce these two insecticidal protein systems are included within the scope of the subject invention. The subject invention also relates in part to combinations of Cry3Aa and Cry6Aa proteins “triple-stacked” or “multi-stacked” with another insecticidal protein(s) such as a Cry6Aa protein or binary Cry34/35 proteins. Thus, such embodiments target rootworms with three modes of action.
    Type: Application
    Filed: April 22, 2011
    Publication date: October 3, 2013
    Applicant: DOW AGROSCIENCES LLC
    Inventors: Kenneth E. Narva, Thomas Meade, Kristin J. Fencil, Huarong Li, Timothy D. Hey, Aaron T. Woosley, Monica B. Olson
  • Publication number: 20130167269
    Abstract: The subject invention relates in part to Cry34Ab/35Ab in combination with Cry6Aa. The subject invention relates in part to the surprising discovery that combinations of Cry34Ab/Cry35Ab and Cry6Aa are useful for preventing development of resistance (to either insecticidal protein system alone) by a corn rootworm (Diabrotica spp.) population. Included within the subject invention are plants producing these insecticidal Cry proteins, which are useful to mitigate concern that a corn rootworm population could develop that would be resistant to either of these insecticidal protein systems alone. Plants (and acreage planted with such plants) that produce these two insecticidal protein systems are included within the scope of the subject invention. The subject invention also relates in part to combinations of Cry34Ab/35Ab and Cry3Aa proteins “triple stacked” with a Cry6Aa protein.
    Type: Application
    Filed: April 22, 2011
    Publication date: June 27, 2013
    Applicant: DOW AGROSCIENCES LLC
    Inventors: Kenneth Narva, Kristin J. Fencil, Timothy D. Hey, Thomas Meade, Huarong Li, Aaron T. Woosley, Monica B. Olson
  • Publication number: 20130167268
    Abstract: The subject invention relates in part to Cry34Ab/35Ab in combination with Cry3Aa. The subject invention relates in part to the surprising discovery that combinations of Cry34Ab/Cry35Ab and Cry3Aa are useful for preventing development of resistance (to either insecticidal protein system alone) by a corn rootworm (Diabrotica spp.) population. As one skilled in the art will recognize with the benefit of this disclosure, corn plants producing these insecticidal Cry proteins will be useful to mitigate concern that a corn rootworm population could develop that would be resistant to either of these insecticidal protein systems alone. Plants (and acreage planted with such plants) that produce these two insecticidal protein systems are included within the scope of the subject invention.
    Type: Application
    Filed: April 22, 2011
    Publication date: June 27, 2013
    Applicant: DOW AGROSCIENCES LLC
    Inventors: Kenneth E. Narva, Thomas Meade, Kristin J. Fencil, Huarong Li, Timothy D. Hey, Aaron T. Woosley, Monica Britt Olson