Patents by Inventor Kristina M. Crousore

Kristina M. Crousore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8134704
    Abstract: A particle detection system to identify and classify particles is programmed to capture digitized images of the particle generated by directing a light source through a fluid that includes the particle. The particle scatters the light and the scattered light is detected using a detector. The detector creates a digital signal corresponding to the particle, which is used by the system to generate Bio-Optical Signature. This Bio-Optical Signature can then be used to classify the event, or particle. Count rate and trends of the classified particles are monitored to detect a change that is representative of the overall health safety of the water or by knowing the levels of bacteria in process water, such as Reverse Osmosis (RO) feed water, reject brine, and product water, the operator may better monitor the life and condition of the RO membrane.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: March 13, 2012
    Assignee: JMAR LLC
    Inventors: John A. Adams, Kristina M. Crousore, Cherish K. Teters, John P. Ricardi, David L. McCarty, Michael P. Tutrow
  • Patent number: 8085399
    Abstract: A particle detection system uses a reflective optic comprising a curved surface to detect high angle scattered light generated by a particle in a liquid medium, when a laser beam is incident on the particle. When the particles transit the laser beam, light is scattered in all directions and is described by MIE scattering theory for particles about the size of the wavelength of light and larger or Rayleigh Scattering when the particles are smaller than the wavelength of light. By using the reflective optic, the scattered light can be detected over angles that are greater than normally obtainable.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: December 27, 2011
    Assignee: JMAR LLC
    Inventors: John A. Adams, Scott H. Bloom, Victor J. Chan, Kristina M. Crousore, Joseph S. Gottlieb, Oscar Hemberg, John J. Lyon, Brett A. Spivey
  • Publication number: 20100027007
    Abstract: A particle detection system uses a reflective optic comprising a curved surface to detect high angle scattered light generated by a particle in a liquid medium, when a laser beam is incident on the particle. When the particles transit the laser beam, light is scattered in all directions and is described by MIE scattering theory for particles about the size of the wavelength of light and larger or Rayleigh Scattering when the particles are smaller than the wavelength of light. By using the reflective optic, the scattered light can be detected over angles that are greater than normally obtainable.
    Type: Application
    Filed: August 3, 2009
    Publication date: February 4, 2010
    Applicant: JMAR LLC
    Inventors: John A. Adams, Scott H. Bloom, Victor J. Chan, Kristina M. Crousore, Joseph S. Gottlieb, Oscar Hemberg, John J. Lyon, Brett A. Spivey
  • Publication number: 20100007505
    Abstract: A particle detection system to identify and classify particles is programmed to capture digitized images of the particle generated by directing a light source through a fluid that includes the particle. The particle scatters the light and the scattered light is detected using a detector. The detector creates a digital signal corresponding to the particle, which is used by the system to generate Bio-Optical Signature. This Bio-Optical Signature can then be used to classify the event, or particle. Count rate and trends of the classified particles are monitored to detect a change that is representative of the overall health safety of the water or by knowing the levels of bacteria in process water, such as Reverse Osmosis (RO) feed water, reject brine, and product water, the operator may better monitor the life and condition of the RO membrane.
    Type: Application
    Filed: June 11, 2009
    Publication date: January 14, 2010
    Applicant: JMAR LLC
    Inventors: John A. Adams, Kristina M. Crousore, Cherish K. Teters, John P. Ricardi, David L. McCarty, Michael P. Tutrow
  • Patent number: 7616311
    Abstract: A particle detection system uses a reflective optic comprising a curved surface to detect high angle scattered light generated by a particle in a liquid medium, when a laser beam is incident on the particle. When the particles transit the laser beam, light is scattered in all directions and is described by MIE scattering theory for particles about the size of the wavelength of light and larger or Rayleigh Scattering when the particles are smaller than the wavelength of light. By using the reflective optic, the scattered light can be detected over angles that are greater than normally obtainable.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: November 10, 2009
    Assignee: JMAR LLC
    Inventors: John A. Adams, Scott H. Bloom, Victor J. Chan, Kristina M. Crousore, Joseph S. Gottlieb, Oscar Hemberg, John J. Lyon, Brett A. Spivey
  • Patent number: 7554661
    Abstract: A particle detection system to identify and classify particles is programmed to capture digitized images of the particle generated by directing a light source through a fluid that includes the particle. The particle scatters the light and the scattered light is detected using a detector. The detector creates a digital signal corresponding to the particle, which is used by the system to generate biological optical signal. This biological optical signal can then be used to classify the event, or particle.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: June 30, 2009
    Assignee: JMAR Technologies, Inc.
    Inventors: John A. Adams, Kristina M. Crousore, Cherish K. Teters, Oscar Hemberg
  • Patent number: 7551279
    Abstract: A particle detection system to identify and classify particles is programmed to capture digitized images of the particle generated by directing a light source through a fluid that includes the particle. The particle scatters the light and the scattered light is detected using a detector. The detector creates a digital signal corresponding to the particle, which is used by the system to generate Bio-Optical Signature. This Bio-Optical Signature can then be used to classify the event, or particle. Count rate and trends of the classified particles are monitored to detect a change that is representative of the overall health safety of the water or by knowing the levels of bacteria in process water, such as Reverse Osmosis (RO) feed water, reject brine, and product water, the operator may better monitor the life and condition of the RO membrane.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: June 23, 2009
    Assignee: JMAR Technologies, Inc.
    Inventors: John A. Adams, Kristina M. Crousore, Cherish K. Teters, John Ricardi, David McCarty, Michael P. Tutrow
  • Patent number: 7532327
    Abstract: A particle detection system uses illumination incident at an angle to detect particles in a liquid such as water. By using illumination incident at an angle, the scattered light can be measured through a range of angles that are greater than the measured range of angles produced when the illumination is incident at a normal angle, when using the same detector. For example, the light can be measured through an angle that is twice that produced with illumination incident at a normal angle.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: May 12, 2009
    Assignee: JMAR Research, Inc.
    Inventors: Scott H. Bloom, John A. Adams, Kristina M. Crousore, Alex Aguirre, Michael Tutrow, Brett A. Spivey
  • Patent number: 7518723
    Abstract: A particle detection system to identify and classify particles is programmed to capture digitized images of the particle generated by directing a light source through a fluid that includes the particle. The particle scatters the light and the scattered light is detected using a detector. The detector creates a digital signal corresponding to the particle, which is used by the system to generate a Bio-Optical Signature. This Bio-Optical Signature can then be used to classify the event, or particle. A count rate of the classified particles is monitored to detect a change that is representative of a toxin attack.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: April 14, 2009
    Assignee: JMAR Technologies, Inc.
    Inventors: John A. Adams, Kristina M. Crousore, Cherish K. Teters, John Ricardi, David L. McCarty, Michael Tutrow