Patents by Inventor Kristoffer J. Donhowe
Kristoffer J. Donhowe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11808467Abstract: Techniques for instantiating energy saving setpoint adjustments are described. In an example, a heating, ventilation, and air conditioning (HVAC) system is controlled via a thermostat during a first time period according to a first temperature setpoint schedule including one or more temperature setpoints and a first usage amount of the HVAC system is monitored during the first time period. After it is determined that the first usage amount of the HVAC system during the first time period has met a first predefined HVAC runtime threshold criterion, a second temperature setpoint schedule is generated with at least one of the one or more temperature setpoints being adjusted to decrease energy usage by the HVAC system compared to the first temperature setpoint schedule. The HVAC system is then controlled via the thermostat during a second time period according to the second temperature setpoint schedule.Type: GrantFiled: January 19, 2022Date of Patent: November 7, 2023Assignee: Google LLCInventors: Marco Bonvini, Kristoffer J. Donhowe, Ramya Bhagavatula, Eric Hayashi
-
Patent number: 11781769Abstract: Techniques for performing an emissions demand response event are described. In an example, a cloud-based HVAC control server system receives an emissions rate forecast for a predefined future time period. Using the emissions rate forecast, a plurality of emissions differential values are created for a plurality of points in time during the predefined future time period. The emissions differential values represent a change in predicted emissions over time. Based on the plurality of emissions differential values and a predefined maximum number of emissions demand response events, an emissions demand response event is generated during the predefined future time period. The cloud-based HVAC control server system then causes a thermostat to control an HVAC system in accordance with the generated emissions demand response event.Type: GrantFiled: June 17, 2021Date of Patent: October 10, 2023Assignee: Google LLCInventors: Samuel Y. Chang, Kristoffer J. Donhowe, Ramya Bhagavatula, Jeffrey Gleeson, Kevin Chen
-
Patent number: 11747036Abstract: Techniques for performing an emissions demand response event are described. In an example, a cloud-based HVAC control server system obtains an emissions rate forecast for a predefined future time period. Using the emissions rate forecast, a future emissions rate event during the predefined future time period is identified. The future emissions rate event comprises an indication of predicted magnitude and a time period when a predicted emissions rate will be at an increased or decreased level. A confidence value indicating a certainty of the future emissions rate event occurring as predicted is determined. Based on the identified future emissions rate event and the confidence value, an emissions demand response event having a start time and an end time during the future emissions rate event is generated. The cloud-based HVAC control server system then causes a thermostat to control an HVAC system in accordance with the generated emissions demand response event.Type: GrantFiled: June 17, 2021Date of Patent: September 5, 2023Assignee: Google LLCInventors: Samuel Y. Chang, Kristoffer J. Donhowe, Ramya Bhagavatula, Jeffrey Gleeson, Kevin Chen
-
Publication number: 20230228437Abstract: Techniques for instantiating energy saving setpoint adjustments are described. In an example, a heating, ventilation, and air conditioning (HVAC) system is controlled via a thermostat during a first time period according to a first temperature setpoint schedule including one or more temperature setpoints and a first usage amount of the HVAC system is monitored during the first time period. After it is determined that the first usage amount of the HVAC system during the first time period has met a first predefined HVAC runtime threshold criterion, a second temperature setpoint schedule is generated with at least one of the one or more temperature setpoints being adjusted to decrease energy usage by the HVAC system compared to the first temperature setpoint schedule. The HVAC system is then controlled via the thermostat during a second time period according to the second temperature setpoint schedule.Type: ApplicationFiled: January 19, 2022Publication date: July 20, 2023Applicant: Google LLCInventors: Marco Bonvini, Kristoffer J. Donhowe, Ramya Bhagavatula, Eric Hayashi
-
Publication number: 20220404049Abstract: Techniques for performing an emissions demand response event are described. In an example, a cloud-based HVAC control server system receives an emissions rate forecast for a predefined future time period. Using the emissions rate forecast, a plurality of emissions differential values are created for a plurality of points in time during the predefined future time period. The emissions differential values represent a change in predicted emissions over time. Based on the plurality of emissions differential values and a predefined maximum number of emissions demand response events, an emissions demand response event is generated during the predefined future time period. The cloud-based HVAC control server system then causes a thermostat to control an HVAC system in accordance with the generated emissions demand response event.Type: ApplicationFiled: June 17, 2021Publication date: December 22, 2022Applicant: Google LLCInventors: Samuel Y. Chang, Kristoffer J. Donhowe, Ramya Bhagavatula, Jeffrey Gleeson, Kevin Chen
-
Publication number: 20220404051Abstract: Techniques for performing an emissions demand response event are described. In an example, a cloud-based HVAC control server system obtains a history of emissions rates. Based on the history of emissions rates, a future time period of predicted high emissions is identified. An emission demand response event participation level of an account mapped to a thermostat is determined for the future time period of predicted high emissions. The emissions demand response event participation level may be one of a plurality of emissions demand response event participation levels. based on the emissions demand response event participation level of the account, an emissions demand response event is generated during the future time period of predicted high emissions. The cloud-based HVAC control server system then causes a thermostat to control an HVAC system in accordance with the generated emissions demand response event.Type: ApplicationFiled: June 17, 2021Publication date: December 22, 2022Applicant: Google LLCInventors: Samuel Y. Chang, Kristoffer J. Donhowe, Ramya Bhagavatula, Jeffrey Gleeson, Kevin Chen
-
Publication number: 20220404050Abstract: Techniques for performing an emissions demand response (EDR) event are described. In an example, a cloud-based HVAC control system may obtain a first emissions rate forecast and generate an EDR event with a start time and end time based on the first emissions rate forecast. The EDR event may then be transmitted to a thermostat and stored in a memory of the thermostat. At the start time, the thermostat may commence controlling an HVAC system according to the EDR event. After the start time and prior to the end time, the cloud-based HVAC control system may obtain a second emissions rate forecast and generate a modified EDR event with a modified end time. The modified EDR event may be transmitted to the thermostat before the end time and/or the modified end time whereupon the thermostat may control the HVAC system accordingly until the modified end time is reached.Type: ApplicationFiled: June 17, 2021Publication date: December 22, 2022Applicant: Google LLCInventors: Samuel Y. Chang, Kristoffer J. Donhowe, Ramya Bhagavatula, Jeffrey Gleeson, Kevin Chen
-
Publication number: 20220404052Abstract: Techniques for performing an emissions demand response event are described. In an example, a cloud-based HVAC control server system obtains an emissions rate forecast for a predefined future time period. Using the emissions rate forecast, a future emissions rate event during the predefined future time period is identified. The future emissions rate event comprises an indication of predicted magnitude and a time period when a predicted emissions rate will be at an increased or decreased level. A confidence value indicating a certainty of the future emissions rate event occurring as predicted is determined. Based on the identified future emissions rate event and the confidence value, an emissions demand response event having a start time and an end time during the future emissions rate event is generated. The cloud-based HVAC control server system then causes a thermostat to control an HVAC system in accordance with the generated emissions demand response event.Type: ApplicationFiled: June 17, 2021Publication date: December 22, 2022Applicant: Google LLCInventors: Samuel Y. Chang, Kristoffer J. Donhowe, Ramya Bhagavatula, Jeffrey Gleeson, Kevin Chen
-
Publication number: 20210038055Abstract: A method may comprise storing a first waypoint corresponding to a first position of a tip of a steerable medical device including an articulatable segment. The controller may perform a motion pause check operation to determine that an insertion motion of the articulatable segment into a patient anatomy has been paused, while the tip is at a second position. The controller may determine that the articulatable segment has resumed the insertion motion into the patient anatomy. After determining that the articulatable segment has resumed the insertion motion, a second waypoint corresponding to the second position of the tip of the steerable medical device, may be stored. A boundary region may be defined to form a three-dimensional volume enclosing the positions of the stored waypoints. The articulatable segment may be constrained to remain within the boundary region as the articulatable segment is inserted in the patient anatomy.Type: ApplicationFiled: August 21, 2020Publication date: February 11, 2021Inventors: Caitlin Q. Donhowe, Amir Belson, Kristoffer J. Donhowe, Kenneth R. Krieg, Eric Storne, Thomas J. Yorkey, Jun Zhang
-
Publication number: 20180333039Abstract: Waypoints for a steerable medical device are stored as the steerable medical device is moved within a patient. The stored waypoints are an ordered sequence of locations. The ordered sequence of locations defines a safe path within the patient for moving an articulatable portion of the steerable medical device. The articulatable portion of the steerable medical device is constrained to follow the safe path as the articulatable portion moves within the patient. For example, the articulatable portion of the steerable medical device is constrained to remain within a boundary region enclosing the safe path as the articulatable portion of the steerable medical device follows the safe path.Type: ApplicationFiled: July 30, 2018Publication date: November 22, 2018Inventors: Caitlin Q. Donhowe, Amir Belson, Kristoffer J. Donhowe, Kenneth R. Krieg, Eric M. Storne, Thomas J. Yorkey, Jun Zhang
-
Patent number: 9913572Abstract: Waypoints for a steerable medical device are stored as the steerable medical device is moved within a patient. The stored waypoints are an ordered sequence of locations. The ordered sequence of locations defines a safe path within the patient for moving an articulatable portion of the steerable medical device. The articulatable portion of the steerable medical device is constrained to follow the safe path as the articulatable portion moves within the patient. For example, the articulatable portion of the steerable medical device is constrained to remain within a boundary region enclosing the safe path as the articulatable portion of the steerable medical device follows the safe path.Type: GrantFiled: November 30, 2016Date of Patent: March 13, 2018Assignee: Intuitive Surgical Operations, Inc.Inventors: Caitlin Q. Donhowe, Amir Belson, Kristoffer J. Donhowe, Kenneth R. Krieg, Eric M. Storne, Thomas J. Yorkey, Jun Zhang
-
Patent number: 9787112Abstract: An inter-protocol charging adapter for equipment to be charged via a bus includes: first connectors corresponding to a first charging protocol that requires the bus to be energized before the equipment closes onto the bus; second connectors corresponding to a second charging protocol that does not energize the bus before the equipment closes onto the bus; and a boost converter coupled to the bus and to at least one of the second connectors, wherein the boost converter uses energy from the second connector to energize the bus before the equipment closes onto the bus.Type: GrantFiled: April 2, 2013Date of Patent: October 10, 2017Assignee: Tesla, Inc.Inventors: Martin Sukup, Troy A. Nergaard, Kristoffer J. Donhowe
-
Publication number: 20170079507Abstract: Waypoints for a steerable medical device are stored as the steerable medical device is moved within a patient. The stored waypoints are an ordered sequence of locations. The ordered sequence of locations defines a safe path within the patient for moving an articulatable portion of the steerable medical device. The articulatable portion of the steerable medical device is constrained to follow the safe path as the articulatable portion moves within the patient. For example, the articulatable portion of the steerable medical device is constrained to remain within a boundary region enclosing the safe path as the articulatable portion of the steerable medical device follows the safe path.Type: ApplicationFiled: November 30, 2016Publication date: March 23, 2017Applicant: INTUITIVE SURGICAL OPERATIONS, INC.Inventors: Caitlin Q. Donhowe, Amir Belson, Kristoffer J. Donhowe, Kenneth R. Krieg, Eric M. Storne, Thomas J. Yorkey, Jun Zhang
-
Patent number: 9517000Abstract: Waypoints for a steerable medical device are stored as the steerable medical device is moved within a patient. The stored waypoints are an ordered sequence of locations. The ordered sequence of locations defines a safe path within the patient for moving an articulatable portion of the steerable medical device. The articulatable portion of the steerable medical device is constrained to follow the safe path as the articulatable portion moves within the patient. For example, the articulatable portion of the steerable medical device is constrained to remain within a boundary region enclosing the safe path as the articulatable portion of the steerable medical device follows the safe path.Type: GrantFiled: October 1, 2013Date of Patent: December 13, 2016Assignee: Intuitive Surgical Operations, Inc.Inventors: Caitlin Q. Donhowe, Amir Belson, Kristoffer J. Donhowe, Kenneth R. Krieg, Eric M. Storne, Thomas J. Yorkey, Jun Zhang
-
Publication number: 20160036256Abstract: An inter-protocol charging adapter for equipment to be charged via a bus includes: first connectors corresponding to a first charging protocol that requires the bus to be energized before the equipment closes onto the bus; second connectors corresponding to a second charging protocol that does not energize the bus before the equipment closes onto the bus; and a boost converter coupled to the bus and to at least one of the second connectors, wherein the boost converter uses energy from the second connector to energize the bus before the equipment closes onto the bus.Type: ApplicationFiled: April 2, 2013Publication date: February 4, 2016Applicant: Tesla Motors, Inc.Inventors: Martin SUKUP, Troy A. NERGAARD, Kristoffer J. Donhowe
-
Publication number: 20140031625Abstract: Waypoints for a steerable medical device are stored as the steerable medical device is moved within a patient. The stored waypoints are an ordered sequence of locations. The ordered sequence of locations defines a safe path within the patient for moving an articulatable portion of the steerable medical device. The articulatable portion of the steerable medical device is constrained to follow the safe path as the articulatable portion moves within the patient. For example, the articulatable portion of the steerable medical device is constrained to remain within a boundary region enclosing the safe path as the articulatable portion of the steerable medical device follows the safe path.Type: ApplicationFiled: October 1, 2013Publication date: January 30, 2014Applicant: Intuitive Surgical Operations, Inc.Inventors: Caitlin Q. Donhowe, Amir Belson, Kristoffer J. Donhowe, Kenneth R. Krieg, Eric M. Storne, Thomas J. Yorkey, Jun Zhang