Patents by Inventor Kristopher A. Darling

Kristopher A. Darling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160319397
    Abstract: High-density thermodynamically stable nanostructured copper-based metallic systems, and methods of making, are presented herein. A ternary high-density thermodynamically stable nanostructured copper-based metallic system includes: a solvent of copper (Cu) metal; that comprises 50 to 95 atomic percent (at. %) of the metallic system; a first solute metal dispersed in the solvent that comprises 0.01 to 50 at. % of the metallic system; and a second solute metal dispersed in the solvent that comprises 0.01 to 50 at. % of the metallic system. The internal grain size of the solvent is suppressed to no more than 250 nm at 98% of the melting point temperature of the solvent and the solute metals remain uniformly dispersed in the solvent at that temperature. Processes for forming these metallic systems include: subjecting powder metals to a high-energy milling process, and consolidating the resultant powder metal subjected to the milling to form a bulk material.
    Type: Application
    Filed: April 7, 2016
    Publication date: November 3, 2016
    Inventors: Laszlo J. Kecskes, Micah J. Gallagher, Anthony J. Roberts, Kristopher A. Darling
  • Patent number: 9387535
    Abstract: The invention is an apparatus and method for safely depressurizing milling vials. The invention utilizes a machinist vise in communication with a pneumatic air cylinder mounted in a jig inside glove box enclosure. The invention utilizes a method for safely depressurizing milling vials. The milling vials are placed into the machinist vise inside the enclosure. The ram of the pneumatic air cylinder is placed on top of the milling vial and the pneumatic air cylinder is pressed firmly against the cap of the milling vial. Next, the air inside the enclosure is evacuated of atmosphere after which the pressure is slowly released from the pneumatic air cylinder. During this stage of the method the operator is a safe distance from the enclosure. As pressure is removed from the pneumatic air cylinder the ram is retracted and the cap of milling vial is removed.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: July 12, 2016
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Kristopher A. Darling, Micah J. Gallagher, Anthony J. Roberts, Laszlo J. Kecskes
  • Patent number: 9333558
    Abstract: A binary or higher order high-density thermodynamically stable nanostructured copper-tantalum based metallic system according to embodiments of the invention may be formed of: a solvent of copper (Cu) metal that comprises 70 to 100 atomic percent (at. %) of the metallic system; and a solute of tantalum (Ta) metal dispersed in the solvent metal, that comprises 0.01 to 15 at. % of the metallic system. The metallic system is thermally stable, with the absence of substantial gross grain growth, such that the internal grain size of the solvent metal is substantially suppressed to no more than about 250 nm at approximately 98% of the melting point temperature of the solvent metal and the solute metal remains substantially uniformly dispersed in the solvent metal at that temperature. Processes for forming these metallic systems may include: subjecting powder metals of solvent and the solute to a high-energy milling process using a high-energy milling device to impart high impact energies to its contents.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: May 10, 2016
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Kristopher A. Darling, Laszlo J. Kecskes, Brady G. Butler
  • Publication number: 20160114462
    Abstract: Nanostructured or ultra-fine grained metallic systems according to embodiments of the invention may be formed of: pure Cu, pure Fe, or pure Ti, with grain sizes of less than 140 nm, 348 nm, or 59 nm, respectively. The metallic systems demonstrate a monotonically increasing grain size dependence from a minimum value attained at the surface; and a converse relation of microhardness, decreasing from 160 kg/mm2, 265 kg/mm2, or 320 kg/mm2, respectively. The grain refinement process at cryogenic conditions relies on the suppression of room temperature dislocation-mediated deformation mechanisms which facilitate grain restructuring, relaxation, and reorientation. At the cryogenic conditions, alternative mechanism for grain refinement, such as shear localization or dynamic recrystallization may be more dominant.
    Type: Application
    Filed: October 27, 2015
    Publication date: April 28, 2016
    Inventors: Laszlo J. Kecskes, Micah J. Gallagher, Anthony J. Roberts, Heather A. Murdoch, Kristopher A. Darling
  • Publication number: 20140196813
    Abstract: The invention is an apparatus and method for safely depressurizing milling vials. The invention utilizes a machinist vise in communication with a pneumatic air cylinder mounted in a jig inside glove box enclosure. The invention utilizes a method for safely depressurizing milling vials. The milling vials are placed into the machinist vise inside the enclosure. The ram of the pneumatic air cylinder is placed on top of the milling vial and the pneumatic air cylinder is pressed firmly against the cap of the milling vial. Next, the air inside the enclosure is evacuated of atmosphere after which the pressure is slowly released from the pneumatic air cylinder. During this stage of the method the operator is a safe distance from the enclosure. As pressure is removed from the pneumatic air cylinder the ram is retracted and the cap of milling vial is removed.
    Type: Application
    Filed: January 16, 2013
    Publication date: July 17, 2014
    Applicant: U.S. Army Research Laboratory ATTN: RDRL-LOC-I
    Inventors: Kristopher A. Darling, Micah J. Gallagher, Anthony J. Roberts, Laszlo J. Kecskes
  • Publication number: 20140026776
    Abstract: High-density thermodynamically stable nanostructured copper-based metallic systems, and methods of making, are presented herein. A ternary high-density thermodynamically stable nanostructured copper-based metallic system includes: a solvent of copper (Cu) metal; that comprises 50 to 95 atomic percent (at. %) of the metallic system; a first solute metal dispersed in the solvent that comprises 0.01 to 50 at. % of the metallic system; and a second solute metal dispersed in the solvent that comprises 0.01 to 50 at. % of the metallic system. The internal grain size of the solvent is suppressed to no more than 250 nm at 98% of the melting point temperature of the solvent and the solute metals remain uniformly dispersed in the solvent at that temperature. Processes for forming these metallic systems include: subjecting powder metals to a high-energy milling process, and consolidating the resultant powder metal subjected to the milling to form a bulk material.
    Type: Application
    Filed: September 6, 2013
    Publication date: January 30, 2014
    Applicant: U.S. Army Research Laboratory ATTN: RDRL-LOC-I
    Inventors: Laszlo J. Kecskes, Micah J. Gallagher, Anthony J. Roberts, Kristopher A. Darling