Patents by Inventor Kristopher J. Derks

Kristopher J. Derks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200150329
    Abstract: Multilayer optical film reflective polarizers previously considered to have excessive off-axis color can provide adequate performance in an LC display without any high haze light diffusing layer or air gap between the reflective polarizer and the back absorbing polarizer of the display. The reflective polarizer has only one packet of microlayers, and is oriented using a standard tenter such that birefringent microlayers in the film are biaxially birefringent. The microlayers in the packet have a layer thickness profile suitably tailored to avoid excessive perceived color at normal and oblique angles. A laminate made by combining this type of reflective polarizer with an absorbing polarizer, without an air gap or any high haze light diffusing layer or structure between the polarizers, can be used and incorporated into a liquid crystal display or the like with adequate color performance both at normal incidence and oblique incidence up to a polar angle of 60 degrees.
    Type: Application
    Filed: January 17, 2020
    Publication date: May 14, 2020
    Inventors: Carl A. Stover, Kristopher J. Derks, Timothy J. Nevitt, Gilles J. Benoit
  • Publication number: 20200142104
    Abstract: An optical film includes a microstructured surface having a plurality of irregularly arranged planar portions forming greater than about 10% of the microstructured surface. The microstructured surface may be configured such that, when the microstructured surface is placed on an emission surface of a lightguide with a first luminous distribution of light exiting the lightguide from the emission surface in a first plane perpendicular to the emission surface, the light emitted by the lightguide is transmitted by the microstructured surface at a second luminous distribution of the transmitted light in the first plane. The first luminous distribution includes a first peak making a first angle greater than about 60 degrees with a normal to the microstructured surface. The second luminous distribution includes a second peak making a second angle in a range from about 5 degrees to about 35 degrees with the normal to the microstructured surface.
    Type: Application
    Filed: July 10, 2018
    Publication date: May 7, 2020
    Inventors: David A. Rosen, Kristopher J. Derks, Tri D. Pham, Kenneth A. Epstein, David J. Lamb
  • Patent number: 10613264
    Abstract: Multilayer optical film reflective polarizers previously considered to have excessive off-axis color can provide adequate performance in an LC display in an “on-glass” configuration, laminated to a back absorbing polarizer of the display, without any light diffusing layer or air gap in such laminate. The reflective polarizer is a tentered-one-packet (TOP) multilayer film, having only one packet of microlayers, and oriented using a standard tenter such that birefringent microlayers in the film are biaxially birefringent. The thickness profile of optical repeat units (ORUs) in the microlayer packet is tailored to avoid excessive perceived color at normal and oblique angles. Color at high oblique angles in the white state of the display is reduced by positioning thicker ORUs closer to the absorbing polarizer, and by ensuring that, with regard to a boxcar average of the ORU thickness profile, the average slope from an ORU(600) to an ORU(645) does not exceed 1.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: April 7, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Timothy J. Nevitt, Carl A. Stover, Gilles J. Benoit, Kristopher J. Derks, Zhaohui Yang
  • Publication number: 20200064525
    Abstract: An optical film (210) includes a microstructured surface (211) comprising a plurality of prismatic structures (230), the microstructured surface (211) defining a reference plane (241-242) and a thickness direction (243) perpendicular to the reference plane; wherein the plurality of prismatic structures includes a plurality of facets (231), each facet having a facet normal direction forming a polar angle with respect to the thickness direction and an azimuthal angle along the reference plane, and wherein the microstructured surface has a surface azimuthal distribution of the plurality of facets that is substantially uniform, and wherein the microstructured surface has a surface polar distribution of the plurality of facets that has an off-axis peak polar distribution.
    Type: Application
    Filed: January 8, 2018
    Publication date: February 27, 2020
    Inventors: Kristopher J. Derks, Tri D. Pham, Kenneth A. Epstein, David J. Lamb
  • Patent number: 10545273
    Abstract: Multilayer optical film reflective polarizers previously considered to have excessive off-axis color can provide adequate performance in an LC display without any high haze light diffusing layer or air gap between the reflective polarizer and the back absorbing polarizer of the display. The reflective polarizer has only one packet of microlayers, and is oriented using a standard tenter such that birefringent microlayers in the film are biaxially birefringent. The microlayers in the packet have a layer thickness profile suitably tailored to avoid excessive perceived color at normal and oblique angles. A laminate made by combining this type of reflective polarizer with an absorbing polarizer, without an air gap or any high haze light diffusing layer or structure between the polarizers, can be used and incorporated into a liquid crystal display or the like with adequate color performance both at normal incidence and oblique incidence up to a polar angle of 60 degrees.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: January 28, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Carl A. Stover, Kristopher J. Derks, Timothy J. Nevitt, Gilles J. Benoit
  • Patent number: 10520655
    Abstract: Glazing articles that reduce glare include a glazing substrate, and a reflective polarizing film article attached to the glazing substrate. The reflective polarizing film article includes a reflective polarizing film, and a reflection inhibitor layer. The reflective polarizing film articles reduce transmission of polarized light with a polarization block axis that is horizontal, and reduce horizontally polarized light to 90% or less of the horizontally polarized incident visible light. The reflective polarizing film may include a multi-layer film construction. The reflection inhibitor layer may include a tinted layer or an absorptive polarizer layer. Glazing units that reduce glare include at least one glazing substrate, at least one reflective polarizing film, and at least one reflection inhibitor layer. The glazing substrate, reflective polarizing film, and reflection inhibitor layer may or may not be in contact with one another.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: December 31, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Bert T. Chien, Yufeng Liu, Kristopher J. Derks, Raghunath Padiyath, Stephen J. Strauss
  • Publication number: 20190346605
    Abstract: Multilayer optical film reflective polarizers previously considered to have excessive off-axis color can provide adequate performance in an LC display in an “on-glass” configuration, laminated to a back absorbing polarizer of the display, without any light diffusing layer or air gap in such laminate. The reflective polarizer is a tentered-one-packet (TOP) multilayer film, having only one packet of microlayers, and oriented using a standard tenter such that birefringent microlayers in the film are biaxially birefringent. The thickness profile of optical repeat units (ORUs) in the microlayer packet is tailored to avoid excessive perceived color at normal and oblique angles. Color at high oblique angles in the white state of the display is reduced by positioning thicker ORUs closer to the absorbing polarizer, and by ensuring that, with regard to a boxcar average of the ORU thickness profile, the average slope from an ORU(600) to an ORU(645) does not exceed 1.
    Type: Application
    Filed: September 12, 2017
    Publication date: November 14, 2019
    Inventors: Timothy J. Nevitt, Carl A. Stover, Gilles J. Benoit, Kristopher J. Derks, Zhaohui Yang
  • Publication number: 20190196076
    Abstract: A polarizer stack including an absorbing polarizer and a multilayer polymeric reflective polarizer bonded together is described. The absorbing polarizer has a first block axis and the reflective polarizer has a second block axis substantially parallel to the first block axis. The reflective polarizer has a shrinkage in a range of 0.4 percent to 3 percent along the second block axis when the reflective polarizer is heated at 95° C. for 40 minutes.
    Type: Application
    Filed: May 16, 2017
    Publication date: June 27, 2019
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Carl A. STOVER, Kristopher J. DERKS
  • Patent number: 10228502
    Abstract: The present disclosure is directed to optical bodies including a first optical film, a second optical film and one or more strippable boundary layers disposed between the first and second optical films. Each major surface of a strippable boundary layer may be disposed adjacent to an optical film or another strippable boundary layer. At least one of the first and second optical films may include a reflective polarizer. The present disclosure is also directed to methods of processing such optical bodies.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: March 12, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Carl A. Stover, Timothy J. Hebrink, Martin E. Denker, Jeffery N. Jackson, Kristopher J. Derks
  • Publication number: 20180348418
    Abstract: Multilayer optical film reflective polarizers previously considered to have excessive off-axis color can provide adequate performance in an LC display without any high haze light diffusing layer or air gap between the reflective polarizer and the back absorbing polarizer of the display. The reflective polarizer has only one packet of microlayers, and is oriented using a standard tenter such that birefringent microlayers in the film are biaxially birefringent. The microlayers in the packet have a layer thickness profile suitably tailored to avoid excessive perceived color at normal and oblique angles. A laminate made by combining this type of reflective polarizer with an absorbing polarizer, without an air gap or any high haze light diffusing layer or structure between the polarizers, can be used and incorporated into a liquid crystal display or the like with adequate color performance both at normal incidence and oblique incidence up to a polar angle of 60 degrees.
    Type: Application
    Filed: November 16, 2016
    Publication date: December 6, 2018
    Inventors: Carl A. Stover, Kristopher J. Derks, Timothy J. Nevitt, Gilles J. Benoit
  • Patent number: 9915762
    Abstract: A sheet comprising: (1) a core member comprising one or more layers and having a first major surface and (2) a slip control layer disposed on at least a portion of the first major surface, wherein the slip control layer comprises: (i) a footing layer disposed on at least a portion of the first major surface of the core member, (ii) a binder layer disposed on the footing layer, and (iii) an array of particles disposed in the binder layer and footing layer and protruding therefrom, wherein the average diameter of the particles is greater than the combined thickness of the foot layer and binder layer.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: March 13, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Kristopher J. Derks, Jeffrey W. Hagen, James E. Lockridge, Jeffrey A. Peterson, Brent A. Hedding
  • Patent number: 9895837
    Abstract: A textured film, a process for manufacture of the textured film, and a light management stack, a backlight, and a display using the textured film are described. The textured film and process for manufacture thereof, include processes in which the surface texture of the optical film is controlled by incorporation of a patterned coating. The surface texture of a polymeric film, such as a polymeric optical film, is controlled by incorporation of the coating, that can fracture or deform upon stretching the film.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: February 20, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Kristopher J. Derks, James E. Lockridge, Adam D. Haag, Jeffrey A. Peterson, Michael J. Schiesl, Jeffrey W. Hagen
  • Patent number: 9851481
    Abstract: A method of making an optical body an optical body is disclosed. The method includes coextruding a first skin layer and a first strippable skin layer on a first side of an optical layer. The first skin layer is disposed between the optical layer and the first strippable skin layer. The first skin layer includes a mixture of a polyacrylate and a second polymer which may or may not be miscible in the polyacrylate. The second polymer may be an anti-static polymer.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: December 26, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: Timothy J. Hebrink, Stephen A. Johnson, Kristopher J. Derks, Kevin M. Hamer
  • Publication number: 20170315267
    Abstract: Optical bodies are disclosed that include a first optical film, a second optical film and at least one rough strippable boundary layer disposed between the first and second optical films. Also disclosed are optical bodies including a strippable boundary layer disposed between the first and second optical films and including a first polymer and a second polymer that is substantially immiscible in the first polymer. The present disclosure also provides methods of processing optical bodies that include stretching the optical bodies.
    Type: Application
    Filed: July 17, 2017
    Publication date: November 2, 2017
    Inventors: Carl A. Stover, Timothy J. Hebrink, Martin E. Denker, Jeffrey N. Jackson, Kristopher J. Derks, Michael F. Weber, Anna A. Kobilansky, Joan M. Strobel, Barry S. Rosell, John P. Purcell, Kevin M. Hamer, Robert D. Taylor, William B. Black, Richard J. Thompson, Gregory L. Bluem
  • Publication number: 20170227699
    Abstract: The present disclosure is directed to optical bodies including a first optical film, a second optical film and one or more strippable boundary layers disposed between the first and second optical films. Each major surface of a strippable boundary layer may be disposed adjacent to an optical film or another strippable boundary layer. At least one of the first and second optical films may include a reflective polarizer. The present disclosure is also directed to methods of processing such optical bodies.
    Type: Application
    Filed: April 27, 2017
    Publication date: August 10, 2017
    Inventors: Carl A. Stover, Timothy J. Hebrink, Martin E. Denker, Jeffery N. Jackson, Kristopher J. Derks
  • Patent number: 9709700
    Abstract: Optical bodies are disclosed that include a first optical film, a second optical film and at least one rough strippable boundary layer disposed between the first and second optical films. Also disclosed are optical bodies including a strippable boundary layer disposed between the first and second optical films and including a first polymer and a second polymer that is substantially immiscible in the first polymer. The present disclosure also provides methods of processing optical bodies that include stretching the optical bodies.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: July 18, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Carl A. Stover, Timothy J. Hebrink, Martin E. Denker, Jeffery N. Jackson, Kristopher J. Derks, Michael F. Weber, Anna A. Kobilansky, Joan M. Strobel, Barry S. Rosell, John P. Purcell, Kevin M. Hamer, Robert D. Taylor, William B. Black, Richard J. Thompson, Gregory L. Bluem
  • Patent number: 9561629
    Abstract: Optical bodies are disclosed that include an optical film and at least one rough strippable skin layer. The at least one rough strippable skin layer can include a continuous phase and a disperse phase. In some embodiments, the at least one rough strippable skin layer can include a first polymer, a second polymer different from the first polymer and an additional material that is substantially immiscible in at least one of the first and second polymers. In some exemplary embodiments, a surface of the at least one rough strippable skin layer adjacent to the optical film comprises a plurality of protrusions and the adjacent surface of the optical film comprises a plurality of asymmetric depressions substantially corresponding to said plurality of protrusions. Methods of making such exemplary optical bodies are also disclosed.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: February 7, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Timothy J. Hebrink, Carl A. Stover, Martin E. Denker, Jeffery N. Jackson, Kristopher J. Derks, Michael F. Weber, Anna A. Wetzels, Joan M. Strobel, Barry S. Rosell, John P. Purcell, Kevin M. Hamer, Robert D. Taylor, William B. Black, Richard J. Thompson, Gregory L. Bluem
  • Patent number: 9513420
    Abstract: Multilayer reflecting polarizing films are disclosed having increased in-plane refractive index differences between adjacent microlayers along both the pass and block axis, and having negative refractive index differences between adjacent microlayers along the thickness or z-axis. Major front and back surfaces of the film exposed to air provide a Fresnel reflectivity component to the pass axis reflectivity, and the microlayers provide a microlayer component to the pass axis reflectivity, such microlayer component preferably having a reflectivity of p-polarized light that increases with incidence angle faster than the Fresnel reflectivity component decreases so as to substantially avoid off-axis gain peaks for p-polarized light. The films preferably utilize a relatively small total number of microlayers, arranged in a single coherent stack with monotonic optical repeat unit thickness profile, and at least some microlayers preferably include polyethylene naphthalate or a copolymer thereof.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: December 6, 2016
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Kristopher J. Derks, Michael F. Weber, Shandon D. Hart, Carl A. Stover
  • Patent number: 9393729
    Abstract: A method is disclosed that includes forming a plurality of polymer layers via a plurality of slots, wherein the plurality of layers are combined to generate a multilayer polymer flow stream; and controlling heat flow to the plurality of slots in conjunction with the formation of the plurality of polymer layers. The multilayer polymer flow stream may be used to generate a multilayer film. In some embodiments, the cross-web layer thickness profile may be controlled by controlling heat flow to the plurality of slots that form the plurality of polymer layers.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: July 19, 2016
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Kristopher J. Derks, Robert M. Biegler, Terence D. Neavin
  • Publication number: 20150316697
    Abstract: Multilayer reflecting polarizing films are disclosed having increased in-plane refractive index differences between adjacent microlayers along both the pass and block axis, and having negative refractive index differences between adjacent microlayers along the thickness or z-axis. Major front and back surfaces of the film exposed to air provide a Fresnel reflectivity component to the pass axis reflectivity, and the microlayers provide a microlayer component to the pass axis reflectivity, such microlayer component preferably having a reflectivity of p-polarized light that increases with incidence angle faster than the Fresnel reflectivity component decreases so as to substantially avoid off-axis gain peaks for p-polarized light. The films preferably utilize a relatively small total number of microlayers, arranged in a single coherent stack with monotonic optical repeat unit thickness profile, and at least some microlayers preferably include polyethylene naphthalate or a copolymer thereof.
    Type: Application
    Filed: July 16, 2015
    Publication date: November 5, 2015
    Inventors: Kristopher J. Derks, Michael F. Weber, Shandon D. Hart, Carl A. Stover