Patents by Inventor Krunal P. Patel

Krunal P. Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11964567
    Abstract: A propulsion control system has an electric motor configured to generate an axle torque in response to a final torque command, and has a motor constraint that specifies a maximum torque. A motor controller is configured to generate the final torque command in response to an intermediate torque command and a distributed power limit command. An open-loop function in supervisory controller is configured to calculate an initial torque command vector in response to a driver torque command, calculate an intended operating vector by mapping the initial torque command vector into a multidimensional power space, generate the intermediate torque command by clipping the intended operating vector in response to the motor constraint, generate a constrained command vector by clipping the intended operating vector in response to the motor constraint and a plurality of energy storage constraints, and generate the distributed power limit command in response to the constrained command vector.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: April 23, 2024
    Assignee: GM Global Technology Operations LLC
    Inventors: Rashad K. Maady, Krunal P. Patel, Matthew Yard, Kristopher D. Lang
  • Patent number: 11752881
    Abstract: A method of operating a vehicle includes a vehicle controller receiving an operator-input vehicle control command with an associated torque request, and identifying any propulsion actuator constraints that limit a brake torque capacity available from the vehicle powertrain. Using the propulsion actuator constraint(s) and torque request, the controller determines a propulsion brake torque distribution for the vehicle's road wheels and a maximum brake torque capacity for the powertrain actuator(s). A first brake torque request is determined using the propulsion brake torque distribution and a vehicle control mode of the powertrain system, and a second brake torque request is determined using the maximum brake torque capacity and the vehicle control mode. A friction brake torque command is determined by arbitrating between the first and second brake torque requests.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: September 12, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Paul G. Otanez, Yiran Hu, Nathaniel S. Michaluk, Krunal P. Patel, Adam J. Heisel, Kevin J. Storch, Jacob M. Knueven, Matthew Yard
  • Patent number: 11708060
    Abstract: A method for distributing electrical power to electric motors in an electric powertrain, in which the electric motors are electrically connected to a shared power supply, includes receiving input signals via a supervisory controller. The input signals include a total torque request of the electric powertrain and electrical limits of the power supply. The method includes determining an open-loop torque command for each respective motor in response to the input signals. In response to the total torque request and the power supply limits, the controller also determines maximum and minimum power limits of motor, with the maximum and minimum power limits including a calibrated power reserve for executing a predetermined torque operation. The method includes transmitting the open-loop torque command and the power limits to a respective motor control processor of each motor to thereby control the torque operation.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: July 25, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Matthew Yard, Krunal P. Patel, Karthikeyan Palanichamy, Luke D. Shepley
  • Publication number: 20220242387
    Abstract: A method for distributing electrical power to electric motors in an electric powertrain, in which the electric motors are electrically connected to a shared power supply, includes receiving input signals via a supervisory controller. The input signals include a total torque request of the electric powertrain and electrical limits of the power supply. The method includes determining an open-loop torque command for each respective motor in response to the input signals. In response to the total torque request and the power supply limits, the controller also determines maximum and minimum power limits of motor, with the maximum and minimum power limits including a calibrated power reserve for executing a predetermined torque operation. The method includes transmitting the open-loop torque command and the power limits to a respective motor control processor of each motor to thereby control the torque operation.
    Type: Application
    Filed: February 2, 2021
    Publication date: August 4, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Matthew Yard, Krunal P. Patel, Karthikeyan Palanichamy, Luke D. Shepley
  • Publication number: 20220227239
    Abstract: A propulsion control system has an electric motor configured to generate an axle torque in response to a final torque command, and has a motor constraint that specifies a maximum torque. A motor controller is configured to generate the final torque command in response to an intermediate torque command and a distributed power limit command. An open-loop function in supervisory controller is configured to calculate an initial torque command vector in response to a driver torque command, calculate an intended operating vector by mapping the initial torque command vector into a multidimensional power space, generate the intermediate torque command by clipping the intended operating vector in response to the motor constraint, generate a constrained command vector by clipping the intended operating vector in response to the motor constraint and a plurality of energy storage constraints, and generate the distributed power limit command in response to the constrained command vector.
    Type: Application
    Filed: January 19, 2021
    Publication date: July 21, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Rashad K. Maady, Krunal P. Patel, Matthew Yard, Kristopher D. Lang
  • Publication number: 20220227237
    Abstract: A method of operating a vehicle includes a vehicle controller receiving an operator-input vehicle control command with an associated torque request, and identifying any propulsion actuator constraints that limit a brake torque capacity available from the vehicle powertrain. Using the propulsion actuator constraint(s) and torque request, the controller determines a propulsion brake torque distribution for the vehicle's road wheels and a maximum brake torque capacity for the powertrain actuator(s). A first brake torque request is determined using the propulsion brake torque distribution and a vehicle control mode of the powertrain system, and a second brake torque request is determined using the maximum brake torque capacity and the vehicle control mode. A friction brake torque command is determined by arbitrating between the first and second brake torque requests.
    Type: Application
    Filed: January 20, 2021
    Publication date: July 21, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Paul G. Otanez, Yiran Hu, Nathaniel S. Michaluk, Krunal P. Patel, Adam J. Heisel, Kevin J. Storch, Jacob M. Knueven, Matthew Yard
  • Publication number: 20200293034
    Abstract: Methods and apparatus are provided for controlling an autonomous vehicle. The control device includes an interface that establishes a connection to an autonomous vehicle, a processor that processes inputs and generates control commands to control at least one function of the autonomous vehicle, and an input arrangement with at least one control element that is assigned to a function of the autonomous vehicle. The control device transitions a controller of the autonomous vehicle to operate in at least one of a first remote operation mode and a second remote operation mode in which the autonomous vehicle is controlled by the control device, when the control device is connected to the autonomous vehicle via the interface. At least one function of a scope of functions of the autonomous vehicle is restricted in the first remote operation mode and the second remote operation mode.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 17, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jonathan T. Shibata, Paul A. Kilmurray, Krunal P. Patel, David H. Vu, Vukasin Denic, Adam J. Heisel, Mohsen Mehdizade
  • Patent number: 10501068
    Abstract: A method for controlling a powertrain system in response to a command to execute a multi-state shift event for the transmission includes determining an initial output torque limit and determining an initial commanded output torque based upon the initial output torque limit. The powertrain system is controlled to generate torque in response to the initial commanded output torque prior to completion of a first state transition of the multi-state shift event that includes a commanded torque reduction. After completion of the first state transition of the multi-state shift event that includes the commanded torque reduction, a torque ramp rate is determined, and the initial commanded output torque is adjusted based upon the torque ramp rate. The powertrain system is controlled to generate torque in response to the initial commanded output torque and the adjusted initial commanded output torque during a remainder of the multi-state shift event.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: December 10, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Krunal P. Patel, Samantha Victoria Lado, Jy-Jen F. Sah, Anthony H. Heap
  • Patent number: 10040439
    Abstract: A powertrain system employing multiple propulsion torque actuators is described. A method for controlling the powertrain system includes interpreting a driver request, including determining a driver torque request and a regenerative braking request based upon driver inputs to an accelerator pedal and a brake pedal. A desired request is determined based upon the driver torque request and the regenerative braking request. Torque limits for the powertrain system are coordinated based upon the desired request, the driver torque request, and a previous driver torque request to determine upper and lower output torque limits, and the upper and lower output torque limits are combined with system constraints to generate a final torque request. The final torque request is employed to determine torque commands for the propulsion torque actuators, and the propulsion torque actuators are controlled based upon the torque commands for the propulsion torque actuators.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: August 7, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Tayoung Choi, Anthony H. Heap, Krunal P Patel, Steven M Hessell
  • Patent number: 9975451
    Abstract: A powertrain system including an internal combustion engine, a transmission and an electric machine is described, and includes the electric machine rotatably coupled to a crankshaft of the internal combustion engine. The transmission is coupled to a driveline to transfer tractive torque and braking torque thereto. A method for controlling the electric machine includes determining a short-term axle torque capacity, a long-term axle torque capacity and a maximum regenerative braking stall torque capacity, and determining an operator request for braking. A preferred regenerative braking capacity is determined based upon the short-term axle torque capacity, the long-term regenerative braking capacity, the engine stall regenerative braking capacity and the operator request for braking. Torque output from the electric machine is controlled based upon the preferred regenerative braking capacity.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: May 22, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Luke D. Shepley, Joshua F. Pacheco, Krunal P. Patel, Anthony H. Heap, Michael Andrew Miller, Michael V. Woon
  • Patent number: 9809130
    Abstract: An electric motor control system for a vehicle includes a vehicle speed module that determines a vehicle speed. A closed loop (CL) module determines a CL torque based on a difference between a target vehicle speed and the vehicle speed. A motor torque module determines a motor torque based on the CL torque and a motor torque request determined based on a position of an accelerator pedal. A switching control module controls switching of an inverter based on the motor torque to control application of power to an electric motor of the vehicle.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: November 7, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Adam J. Heisel, Christopher J. Twarog, Anthony H. Heap, Derek S. Bonderczuk, Krunal P. Patel, Lawrence A. Kaminsky, Nathaniel S. Michaluk, Robert L. Morris, Shaochun Ye, Jeffrey J. Waldner
  • Patent number: 9796372
    Abstract: A method for controlling a powertrain of a vehicle includes calculating, via a controller, an optimal torque target for the powertrain as a function of system limits of the vehicle. The method includes commanding, via transmission of an output torque signal, an actual output torque of the powertrain to pursue or follow the calculated optimal torque target during a steady-state torque request condition. Additionally, the method includes detecting a predetermined vehicle event during the steady-state torque request condition, and shaping the output torque signal via the controller. A variable gain factor may be used in response to detection of the predetermined vehicle event to allow the output torque signal to temporarily deviate from the calculated optimal torque target during the steady-state torque request condition. A powertrain has an engine, an electric machine, and a controller programmed to execute the method.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: October 24, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Tayoung Choi, Krunal P Patel, Anthony H. Heap
  • Publication number: 20170297553
    Abstract: A method for controlling a powertrain system in response to a command to execute a multi-state shift event for the transmission includes determining an initial output torque limit and determining an initial commanded output torque based upon the initial output torque limit. The powertrain system is controlled to generate torque in response to the initial commanded output torque prior to completion of a first state transition of the multi-state shift event that includes a commanded torque reduction. After completion of the first state transition of the multi-state shift event that includes the commanded torque reduction, a torque ramp rate is determined, and the initial commanded output torque is adjusted based upon the torque ramp rate. The powertrain system is controlled to generate torque in response to the initial commanded output torque and the adjusted initial commanded output torque during a remainder of the multi-state shift event.
    Type: Application
    Filed: April 19, 2016
    Publication date: October 19, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Krunal P. Patel, Samantha Victoria Lado, Jy-Jen F. Sah, Anthony H. Heap
  • Publication number: 20170136916
    Abstract: An electric motor control system for a vehicle includes a vehicle speed module that determines a vehicle speed. A closed loop (CL) module determines a CL torque based on a difference between a target vehicle speed and the vehicle speed. A motor torque module determines a motor torque based on the CL torque and a motor torque request determined based on a position of an accelerator pedal. A switching control module controls switching of an inverter based on the motor torque to control application of power to an electric motor of the vehicle.
    Type: Application
    Filed: March 24, 2016
    Publication date: May 18, 2017
    Inventors: Adam J. HEISEL, Christopher J. Twarog, Anthony H. Heap, Derek S. Bonderczuk, Krunal P. Patel, Lawrence A. Kaminsky, Nathaniel S. Michaluk, Robert L. Morris, Shaochun Ye, Jeffrey J. Waldner
  • Publication number: 20170120889
    Abstract: A method for controlling a powertrain of a vehicle includes calculating, via a controller, an optimal torque target for the powertrain as a function of system limits of the vehicle. The method includes commanding, via transmission of an output torque signal, an actual output torque of the powertrain to pursue or follow the calculated optimal torque target during a steady-state torque request condition. Additionally, the method includes detecting a predetermined vehicle event during the steady-state torque request condition, and shaping the output torque signal via the controller. A variable gain factor may be used in response to detection of the predetermined vehicle event to allow the output torque signal to temporarily deviate from the calculated optimal torque target during the steady-state torque request condition. A powertrain has an engine, an electric machine, and a controller programmed to execute the method.
    Type: Application
    Filed: October 28, 2015
    Publication date: May 4, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Tayoung Choi, Krunal P Patel, Anthony H. Heap
  • Publication number: 20160362020
    Abstract: A powertrain system including an internal combustion engine, a transmission and an electric machine is described, and includes the electric machine rotatably coupled to a crankshaft of the internal combustion engine. The transmission is coupled to a driveline to transfer tractive torque and braking torque thereto. A method for controlling the electric machine includes determining a short-term axle torque capacity, a long-term axle torque capacity and a maximum regenerative braking stall torque capacity, and determining an operator request for braking. A preferred regenerative braking capacity is determined based upon the short-term axle torque capacity, the long-term regenerative braking capacity, the engine stall regenerative braking capacity and the operator request for braking. Torque output from the electric machine is controlled based upon the preferred regenerative braking capacity.
    Type: Application
    Filed: April 15, 2016
    Publication date: December 15, 2016
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Luke D. Shepley, Joshua F. Pacheco, Krunal P. Patel, Anthony H. Heap, Michael Andrew Miller, Michael V. Woon
  • Patent number: 9487104
    Abstract: A method for controlling an electrically-powered torque machine of a powertrain system includes determining a predicted torque command to control the torque machine. A flux command is determined responsive to the predicted torque command. The flux command is a flux level providing a fast torque reserve that is responsive to the predicted torque command. The fast torque reserve is a prescribed minimum rate of change in torque output from the torque machine responsive to the predicted torque command. An inverter controller controls flux of the torque machine responsive to the flux command.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: November 8, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jihoon Jang, Sean W. McGrogan, William R. Cawthorne, Krunal P. Patel, Bon Ho Bae
  • Publication number: 20160257292
    Abstract: A powertrain system employing multiple propulsion torque actuators is described. A method for controlling the powertrain system includes interpreting a driver request, including determining a driver torque request and a regenerative braking request based upon driver inputs to an accelerator pedal and a brake pedal. A desired request is determined based upon the driver torque request and the regenerative braking request. Torque limits for the powertrain system are coordinated based upon the desired request, the driver torque request, and a previous driver torque request to determine upper and lower output torque limits, and the upper and lower output torque limits are combined with system constraints to generate a final torque request. The final torque request is employed to determine torque commands for the propulsion torque actuators, and the propulsion torque actuators are controlled based upon the torque commands for the propulsion torque actuators.
    Type: Application
    Filed: September 23, 2015
    Publication date: September 8, 2016
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Tayoung Choi, Anthony H. Heap, Krunal P Patel, Steven M Hessell
  • Patent number: 9174631
    Abstract: A multi-mode transmission is configured to transfer torque among an internal combustion engine, torque machines and an output member. A method for controlling shifting in the transmission includes, in response to a command to execute a range shift in the transmission to a target transmission range: applying mechanical braking torque to reduce output torque from the transmission to off-load torque from an off-going clutch, operating in a pseudo-gear range to synchronize an oncoming clutch, and applying the oncoming clutch to establish the transmission in the target range.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: November 3, 2015
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Anthony H. Heap, Sean W. McGrogan, Krunal P. Patel
  • Publication number: 20150155812
    Abstract: A method for controlling an electrically-powered torque machine of a powertrain system includes determining a predicted torque command to control the torque machine. A flux command is determined responsive to the predicted torque command. The flux command is a flux level providing a fast torque reserve that is responsive to the predicted torque command. The fast torque reserve is a prescribed minimum rate of change in torque output from the torque machine responsive to the predicted torque command. An inverter controller controls flux of the torque machine responsive to the flux command.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 4, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: JIHOON JANG, SEAN W. MCGROGAN, WILLIAM R. CAWTHORNE, KRUNAL P. PATEL, BON HO BAE