Patents by Inventor Krystel R. Huxlin

Krystel R. Huxlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230346602
    Abstract: A method for modifying a refractive property of ocular tissue in an eye by creating at least one optically-modified gradient index (GRIN) layer in the corneal stroma and/or the crystalline by continuously scanning a continuous stream of laser pulses having a focal volume from a laser having a known average power along a continuous line having a smoothly changing refractive index within the tissue, and varying either or both of the scan speed and the laser average power during the scan. The method may further involve determining a desired vision correction adjustment, and determining a position, number, and design parameters of gradient index (GRIN) layers to be created within the ocular tissue to provide the desired vision correction.
    Type: Application
    Filed: May 17, 2023
    Publication date: November 2, 2023
    Inventors: Wayne H. Knox, Krystel R. Huxlin
  • Patent number: 11690759
    Abstract: A method for modifying a refractive property of ocular tissue in an eye by creating at least one optically-modified gradient index (GRIN) layer in the corneal stroma and/or the crystalline by continuously scanning a continuous stream of laser pulses having a focal volume from a laser having a known average power along a continuous line having a smoothly changing refractive index within the tissue, and varying either or both of the scan speed and the laser average power during the scan. The method may further involve determining a desired vision correction adjustment, and determining a position, number, and design parameters of gradient index (GRIN) layers to be created within the ocular tissue to provide the desired vision correction.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: July 4, 2023
    Assignee: University of Rochester
    Inventors: Wayne H. Knox, Krystel R. Huxlin
  • Publication number: 20230149216
    Abstract: Refractive index writing system and methods employing a pulsed laser source for providing a pulsed laser output at a first wavelength; an objective lens for focusing the pulsed laser output to a focal spot in an optical material; a scanner for relatively moving the focal spot with respect to the optical material at a relative speed and direction along a scan region for writing one or more traces in the optical material defined by a change in refractive index; and a controller for controlling laser exposures along the one or more traces in accordance with a calibration function for the optical material to achieve a desired refractive index profile in the optical material. The refractive index writing system may be for writing traces in in vivo optical tissue, and the controller may be configured with a calibration function obtained by calibrating refractive index change induced in enucleated ocular globes.
    Type: Application
    Filed: January 20, 2023
    Publication date: May 18, 2023
    Inventors: Wayne Knox, Jonathan D. Ellis, Krystel R. Huxlin, Daniel R. Brooks, Kaitlin T. Wozniak
  • Patent number: 11571336
    Abstract: Refractive index writing system and methods employing a pulsed laser source for providing a pulsed laser output at a first wavelength; an objective lens for focusing the pulsed laser output to a focal spot in an optical material; a scanner for relatively moving the focal spot with respect to the optical material at a relative speed and direction along a scan region for writing one or more traces in the optical material defined by a change in refractive index; and a controller for controlling laser exposures along the one or more traces in accordance with a calibration function for the optical material to achieve a desired refractive index profile in the optical material. The refractive index writing system may be for writing traces in in vivo optical tissue, and the controller may be configured with a calibration function obtained by calibrating refractive index change induced in enucleated ocular globes.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: February 7, 2023
    Assignee: University of Rochester
    Inventors: Wayne Knox, Jonathan D. Ellis, Krystel R. Huxlin, Daniel R. Brooks, Kaitlin T. Wozniak
  • Publication number: 20210052425
    Abstract: Refractive index writing system and methods employing a pulsed laser source for providing a pulsed laser output at a first wavelength; an objective lens for focusing the pulsed laser output to a focal spot in an optical material; a scanner for relatively moving the focal spot with respect to the optical material at a relative speed and direction along a scan region for writing one or more traces in the optical material defined by a change in refractive index; and a controller for controlling laser exposures along the one or more traces in accordance with a calibration function for the optical material to achieve a desired refractive index profile in the optical material. The refractive index writing system may be for writing traces in in vivo optical tissue, and the controller may be configured with a calibration function obtained by calibrating refractive index change induced in enucleated ocular globes.
    Type: Application
    Filed: January 25, 2019
    Publication date: February 25, 2021
    Inventors: Wayne Knox, Jonathan D. Ellis, Krystel R. Huxlin, Daniel R. Brooks, Kaitlin T. Wozniak
  • Publication number: 20210045920
    Abstract: A method for modifying a refractive property of ocular tissue in an eye by creating at least one optically-modified gradient index (GRIN) layer in the corneal stroma and/or the crystalline by continuously scanning a continuous stream of laser pulses having a focal volume from a laser having a known average power along a continuous line having a smoothly changing refractive index within the tissue, and varying either or both of the scan speed and the laser average power during the scan. The method may further involve determining a desired vision correction adjustment, and determining a position, number, and design parameters of gradient index (GRIN) layers to be created within the ocular tissue to provide the desired vision correction.
    Type: Application
    Filed: October 16, 2020
    Publication date: February 18, 2021
    Inventors: Wayne H. Knox, Krystel R. Huxlin
  • Patent number: 10813791
    Abstract: A method for modifying a refractive property of ocular tissue in an eye by creating at least one optically-modified gradient index (GRIN) layer in the corneal stroma and/or the crystalline by continuously scanning a continuous stream of laser pulses having a focal volume from a laser having a known average power along a continuous line having a smoothly changing refractive index within the tissue, and varying either or both of the scan speed and the laser average power during the scan. The method may further involve determining a desired vision correction adjustment, and determining a position, number, and design parameters of gradient index (GRIN) layers to be created within the ocular tissue to provide the desired vision correction.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: October 27, 2020
    Assignee: University of Rochester
    Inventors: Wayne H. Knox, Krystel R. Huxlin
  • Publication number: 20190254875
    Abstract: A method for providing vision correction to a patient. The method includes: (a) measuring the degree of vision correction needed by the patient and determining the location and shape of refractive structures that need to be positioned within the cornea to partially correct a patient's vision; (b) directing and focusing femtosecond laser pulses in the blue spectral region within the cornea at an intensity high enough to change the refractive index of the cornea within a focal region, but not high enough to damage the cornea or to affect cornea tissue outside of the focal region; and (c) scanning the laser pulses across a volume of the cornea or the lens to provide the focal region with refractive structures in the cornea or the lens. Again, the refractive structures are characterized by a change in refractive index, and exhibit little or no scattering loss.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 22, 2019
    Inventors: Wayne H. Knox, Krystel R. Huxlin
  • Patent number: 10271991
    Abstract: A method for providing vision correction to a patient. The method includes: (a) measuring the degree of vision correction needed by the patient and determining the location and shape of refractive structures that need to be positioned within the cornea to partially correct a patient's vision; (b) directing and focusing femtosecond laser pulses in the blue spectral region within the cornea at an intensity high enough to change the refractive index of the cornea within a focal region, but not high enough to damage the cornea or to affect cornea tissue outside of the focal region; and (c) scanning the laser pulses across a volume of the cornea or the lens to provide the focal region with refractive structures in the cornea or the lens. Again, the refractive structures are characterized by a change in refractive index, and exhibit little or no scattering loss.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: April 30, 2019
    Assignee: University of Rochester
    Inventors: Wayne H. Knox, Krystel R. Huxlin
  • Patent number: 10226381
    Abstract: By adapting femtosecond micromachining approaches developed in hydrogels, we can perform Intra-tissue Refractive Index Shaping (IRIS) in biological tissues. We reduced femtosecond laser pulse energies below the optical breakdown thresholds to create grating patterns that are associated with a change in the refractive index of the tissue. To increase two-photon absorption, we used a two (or more)-photon-absorbing chromophore.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: March 12, 2019
    Assignee: University of Rochester
    Inventors: Wayne H. Knox, Krystel R. Huxlin, Li Ding
  • Publication number: 20190046357
    Abstract: A laser system for changing the index of refraction of cornea tissue in a living eye. The laser system comprises a laser that provides laser pulses with a wavelength from 400 nm to 900 nm and a pulse energy from 0.01 nJ to 10 nJ, and a control device for setting the operating parameters of the laser below an optical breakdown threshold of the tissue to avoid photo-disruption and tissue destruction of the tissue, and to direct the laser pulses at the cornea tissue resulting in a change in the index of refraction of the tissue within regions irradiated by the laser pulses.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Inventors: Wayne H. Knox, Krystel R. Huxlin, Jay F. Kunzler, Li Ding
  • Publication number: 20170156931
    Abstract: By adapting femtosecond micromachining approaches developed in hydrogels, we can perform Intra-tissue Refractive Index Shaping (IRIS) in biological tissues. We reduced femtosecond laser pulse energies below the optical breakdown thresholds to create grating patterns that are associated with a change in the refractive index of the tissue. To increase two-photon absorption, we used a two (or more)-photon-absorbing chromophore.
    Type: Application
    Filed: January 13, 2017
    Publication date: June 8, 2017
    Inventors: Wayne H. Knox, Krystel R. Huxlin, Li Ding
  • Publication number: 20170035613
    Abstract: A method for providing vision correction to a patient. The method includes: (a) measuring the degree of vision correction needed by the patient and determining the location and shape of refractive structures that need to be positioned within the cornea to partially correct a patient's vision; (b) directing and focusing femtosecond laser pulses in the blue spectral region within the cornea at an intensity high enough to change the refractive index of the cornea within a focal region, but not high enough to damage the cornea or to affect cornea tissue outside of the focal region; and (c) scanning the laser pulses across a volume of the cornea or the lens to provide the focal region with refractive structures in the cornea or the lens. Again, the refractive structures are characterized by a change in refractive index, and exhibit little or no scattering loss.
    Type: Application
    Filed: October 19, 2016
    Publication date: February 9, 2017
    Inventors: Wayne H. Knox, Krystel R. Huxlin
  • Patent number: 9545340
    Abstract: By adapting femtosecond micromachining approaches developed in hydrogels, we can perform Intra-tissue Refractive Index Shaping (IRIS) in biological tissues. We reduced femtosecond laser pulse energies below the optical breakdown thresholds to create grating patterns that are associated with a change in the refractive index of the tissue. To increase two-photon absorption, we used a two (or more)-photon-absorbing chromophore.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: January 17, 2017
    Assignee: University of Rochester
    Inventors: Wayne H. Knox, Krystel R. Huxlin, Li Ding
  • Patent number: 9492323
    Abstract: A method for providing vision correction to a patient. The method includes: (a) measuring the degree of vision correction needed by the patient and determining the location and shape of refractive structures that need to be positioned within the cornea to partially correct a patient's vision; (b) directing and focusing femtosecond laser pulses in the blue spectral region within the cornea at an intensity high enough to change the refractive index of the cornea within a focal region, but not high enough to damage the cornea or to affect cornea tissue outside of the focal region; and (c) scanning the laser pulses across a volume of the cornea or the lens to provide the focal region with refractive structures in the cornea or the lens. Again, the refractive structures are characterized by a change in refractive index, and exhibit little or no scattering loss.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: November 15, 2016
    Assignee: University of Rochester
    Inventors: Wayne H. Knox, Krystel R. Huxlin
  • Publication number: 20140107632
    Abstract: A method for providing vision correction to a patient. The method includes: (a) measuring the degree of vision correction needed by the patient and determining the location and shape of refractive structures that need to be positioned within the cornea to partially correct a patient's vision; (b) directing and focusing femtosecond laser pulses in the blue spectral region within the cornea at an intensity high enough to change the refractive index of the cornea within a focal region, but not high enough to damage the cornea or to affect cornea tissue outside of the focal region; and (c) scanning the laser pulses across a volume of the cornea or the lens to provide the focal region with refractive structures in the cornea or the lens. Again, the refractive structures are characterized by a change in refractive index, and exhibit little or no scattering loss.
    Type: Application
    Filed: December 17, 2013
    Publication date: April 17, 2014
    Applicant: UNIVERSITY OF ROCHESTER
    Inventors: Wayne H. Knox, Krystel R. Huxlin
  • Patent number: 8617147
    Abstract: A method for providing vision correction to a patient. The method includes: (a) measuring the degree of vision correction needed by the patient and determining the location and shape of refractive structures that need to be positioned within the cornea to partially correct a patient's vision; (b) directing and focusing femtosecond laser pulses in the blue spectral region within the cornea at an intensity high enough to change the refractive index of the cornea within a focal region, but not high enough to damage the cornea or to affect cornea tissue outside of the focal region; and (c) scanning the laser pulses across a volume of the cornea or the lens to provide the focal region with refractive structures in the cornea or the lens. Again, the refractive structures are characterized by a change in refractive index, and exhibit little or no scattering loss.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: December 31, 2013
    Assignee: University of Rochester
    Inventors: Wayne H. Knox, Krystel R. Huxlin
  • Patent number: 8512320
    Abstract: The invention is directed to a method for correcting vision in a patient by modifying the refractive index of cornea tissue. The method comprises identifying and measuring the degree of vision correction of the patient; and determining the position and type of refractive structures to be written into the cornea tissue of the patient to correct the patient's vision. The refractive structures are written by irradiating select regions of the cornea tissue with focused laser pulses having a wavelength from 400 nm to 900 nm and a pulse energy from 0.01 nJ to 10 nJ. The refractive structures are characterized by a positive change in refractive index in relation to non-irradiated cornea tissue of the patient.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: August 20, 2013
    Assignees: Bausch & Lomb Incorporated, University of Rochester
    Inventors: Wayne H. Knox, Krystel R. Huxlin, Jay F. Kunzler, Li Ding
  • Patent number: 8486055
    Abstract: A method for modifying the refractive index of ocular tissues. The method comprises irradiating select regions of ocular tissue with a visible or near-IR laser. The irradiation results in the formation of structures in the ocular tissue, characterized by a change in refractive index, and which exhibit little or no scattering loss.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: July 16, 2013
    Assignees: Bausch & Lomb Incorporated, University of Rochester
    Inventors: Wayne H. Knox, Li Ding, Krystel R. Huxlin, Jay F. Kunzler
  • Publication number: 20120310223
    Abstract: A method for modifying a refractive property of ocular tissue in an eye by creating at least one optically-modified gradient index (GRIN) layer in the corneal stroma and/or the crystalline by continuously scanning a continuous stream of laser pulses having a focal volume from a laser having a known average power along a continuous line having a smoothly changing refractive index within the tissue, and varying either or both of the scan speed and the laser average power during the scan. The method may further involve determining a desired vision correction adjustment, and determining a position, number, and design parameters of gradient index (GRIN) layers to be created within the ocular tissue to provide the desired vision correction.
    Type: Application
    Filed: December 15, 2011
    Publication date: December 6, 2012
    Applicant: UNIVERSITY OF ROCHESTER
    Inventors: Wayne H. Knox, Krystel R. Huxlin