Patents by Inventor Krzysztof A. Matyjaszewski

Krzysztof A. Matyjaszewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8367051
    Abstract: Functional gel particle formed from a crosslinked polymeric network including a fraction of stable crosslinks and a second fraction of cleavable crosslinks are disclosed. Functional compounds may be chemically or physically encapsulated within and/or released from the gel particle by selective cleavage of the cleavable crosslinks. The functional compounds may be delivered and released to a pre-selected target site. Peripheral or other accessible functionality on the surface of the gel particle allows attachment of a surface reactive agent, thereby modifying one or more surface properties of the gel particle. Processes of preparing the gel particles and processes of delivering the functional compounds to a target site are also disclosed.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: February 5, 2013
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Ke Min, Jung Kwon Oh, James Spanswick, Nicolay V. Tsarevsky
  • Publication number: 20130011441
    Abstract: The present invention relates to nanostructured bioconjugates and nano-structured network hydrogels used to deliver nucleic acids to targeted biological locations. The present invention further relates to methods of treating clinical conditions using the nanostructured bioconjugates and nano-structured network hydrogels.
    Type: Application
    Filed: January 6, 2012
    Publication date: January 10, 2013
    Applicant: Carnegie Mellon University
    Inventors: Jeffrey O. Hollinger, Krzysztof Matyjaszewski, Abiraman Srinivasan
  • Patent number: 8349410
    Abstract: A polymer formed by controlled radical polymerization includes groups that can be modified after controlled radical polymerization to form a radical. The polymer can be the reaction product of a controlled radical polymerization of radically polymerizable monomers, wherein at least one of the radically polymerizable monomers includes at least one group that can be modified after the controlled radical polymerization to form a radical. A compound includes a first group that is stimulated upon application of energy to the molecule to tether the molecule to a surface or to another polymer chain and a second group comprising a controlled radical polymerization initiator functionality. A block copolymer includes at least a first segment to impart a predetermined functionality to a target surface and at least a second segment including functional groups to interact with the targeted surface to attach the block copolymer to the surface.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: January 8, 2013
    Assignees: University of Pittsburgh—of the Commonwealth System of Higher Education, Carnegie Mellon University
    Inventors: Jinyu Huang, Alan J. Russell, Nicolay V. Tsarevsky, Krzysztof Matyjaszewski
  • Patent number: 8273823
    Abstract: The invention is directed to a microemulsion polymerization comprising adding a polymerization catalyst precursor, such as a transition metal complex in the higher of two accessible oxidation states, an ATRP initiator, and an organic solvent to an aqueous solution to form an emulsion. Radically polymerizable monomers and a reducing agent may then be added to the emulsion. The reducing agent converts the catalyst precursor to a catalyst for polymerization of the first monomer from the initiator. In certain embodiments the organic solvent may comprise radically polymerizable monomers. The aqueous solution may comprise a surfactant.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: September 25, 2012
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Ke Min
  • Patent number: 8252880
    Abstract: The present disclosure describes a two-step batch dispersion polymerization process for the preparation of substantially uniformed-sized functional (co)polymer particles. The first step of the process includes polymerizing at least one first radically (co)polymerizable monomer by a free radical polymerization process to form a (co)polymer in a stable colloidal dispersion and the second step includes polymerizing the at first radically (co)polymerizable monomer or an additional radically (co)polymerizable monomer in the stable colloidal dispersion by a living/controlled radical (co)polymerization process.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: August 28, 2012
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Ke Min, James Spanswick
  • Publication number: 20120213986
    Abstract: The present disclosure describes a carbon electrode having a high specific capacitance and method for forming an electrode. The electrode includes a graphitic carbon material having porous nanographene structures with edge-on topology to a plurality of formed pores, dispersed in an amorphous carbon matrix. The graphitic carbon material is formed by pyrolysis of phase separated block copolymers.
    Type: Application
    Filed: August 17, 2010
    Publication date: August 23, 2012
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Tomasz Kowalewski, Eun Kyung Kim, John P. McGann, Krzysztof Matyjaszewski
  • Publication number: 20120077899
    Abstract: A process for constructing multi-arm star macromolecules with uniform properties, high molecular weight and narrow molecular weight distribution using free radical polymerization is described.
    Type: Application
    Filed: March 29, 2010
    Publication date: March 29, 2012
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Krzysztof Matyjaszewski, Haifeng Gao, James Spanswick
  • Publication number: 20110290635
    Abstract: The present invention relates to a polymerization inhibitor composition and a method of inhibiting polymerization of distillable monomers in liquid and evaporated/condensed phases with the polymerization inhibitor composition. The polymerization inhibitor composition is useful for inhibiting polymerization of the distillable monomers during manufacture, purification (e.g., distillation), handling, and storage thereof.
    Type: Application
    Filed: February 18, 2010
    Publication date: December 1, 2011
    Inventors: Kishore K. Kar, Michael D. Cloeter, Olan Stanley Fruchey, Richard S. Harner, Krzysztof Matyjaszewski, Renaud Nicolay, Jaroslav Mosnacek
  • Publication number: 20110218306
    Abstract: Embodiments of the polymerization process of the present invention are directed to polymerizing free radically polymerizable monomers in the presence of a polymerization medium initially comprising at least one transition metal catalyst and an atom transfer radical polymerization initiator. The polymerization medium may additionally comprise a reducing agent. The reducing agent may be added initially or during the polymerization process in a continuous or intermittent manner. The polymerization process may further comprises reacting the reducing agent with at least one of the transition metal catalyst in an oxidized state and a compound comprising a radically transferable atom or group to form a compound that does not participate significantly in control of the polymerization process.
    Type: Application
    Filed: February 14, 2011
    Publication date: September 8, 2011
    Applicant: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Lindsay Bombalski, Wojciech Jakubowski, Ke Min, James Spanswick, Nicolay V. Tsarevsky
  • Publication number: 20110065875
    Abstract: Polymerization processes of the present invention comprise low catalyst concentration. Embodiments include a polymerization process comprising polymerizing free radically (co)polymerizable monomers in a polymerization medium comprising one or more radically (co)polymerizable monomers, a transition metal catalyst complex capable of participating in a one electron redox reaction with an ATRP initiator; a free radical initiator; and an ATRP initiator; (wherein the concentration of transition metal catalyst complex in the polymerization medium is less than 100 ppm). Further embodiments include a polymerization process, comprising polymerizing one or more radically (co)polymerizable monomers in the presence of at least one transition metal catalyst complex; an ATRP initiator; and a reducing agent; wherein the transition metal catalyst complex is present at less than 10?3 mole compared to the moles of radically transferable atoms or groups present on the ATRP initiator.
    Type: Application
    Filed: November 18, 2010
    Publication date: March 17, 2011
    Inventors: Krzysztof Matyjaszewski, Wojciech Jakubowski, James Spanswick
  • Publication number: 20110060107
    Abstract: The process of the present invention is directed toward conducting highly selective, high yield post polymerization reactions on polymers to prepare functionalized polymers. An embodiment of the present invention comprises conducting click chemistry reactions on polymers. Preferably, the polymers were prepared by controlled polymerization processes. Therefore, embodiments of the present invention comprise processes for the preparation of polymers comprising conducting a click chemistry reaction on a functional group attached to a polymer, wherein the polymer has a molecular weight distribution of less than 2.0. The functional polymers may be prepared by converting an attached functional unit on the polymer thereby providing site specific functional materials, site specific functional materials comprising additional functionality, or chain extended functional materials.
    Type: Application
    Filed: September 8, 2010
    Publication date: March 10, 2011
    Applicant: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Brent S. Sumerlin, Nicolay V. Tsarevsky, James Spanswick
  • Publication number: 20110046324
    Abstract: A transition metal mediated chain transfer agent controlled polymerization process is described. The process combines the advantages of atom transfer radical polymerization (ATRP) and reversible addition fragmentation transfer (RAFT) polymerization. Synthesis of chain transfer agents useful in the disclosed processes is also disclosed. Other improvements on ATRP RAFT processes are also described.
    Type: Application
    Filed: March 6, 2009
    Publication date: February 24, 2011
    Inventors: Krzysztof Matyjaszewski, Yungwan Kwak, Renaud Nicolay
  • Patent number: 7893174
    Abstract: Embodiments of the polymerization process of the present invention are directed to polymerizing free radically polymerizable monomers in the presence of a polymerization medium initially comprising at least one transition metal catalyst and an atom transfer radical polymerization initiator. The polymerization medium may additionally comprise a reducing agent. The reducing agent may be added initially or during the polymerization process in a continuous or intermittent manner. The polymerization process may further comprise reacting the reducing agent with at least one of the transition metal catalyst in an oxidized state and a compound comprising a radically transferable atom or group to form a compound that does not participate significantly in control of the polymerization process.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: February 22, 2011
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Lindsay Bombalski, Wojciech Jakubowski, Ke Min, James Spanswick, Nicolay V. Tsarevsky
  • Patent number: 7893173
    Abstract: Polymerization processes of the present invention comprise low catalyst concentration. Embodiments include a polymerization process comprising polymerizing free radically (co)polymerizable monomers in a polymerization medium comprising one or more radically (co)polymerizable monomers, a transition metal catalyst complex capable of participating in a one electron redox reaction with an ATRP initiator; a free radical initiator; and an ATRP initiator; (wherein the concentration of transition metal catalyst complex in the polymerization medium is less than 100 ppm). Further embodiments include a polymerization process, comprising polymerizing one or more radically (co)polymerizable monomers in the presence of at least one transition metal catalyst complex; and an ATRP initiator; and a reducing agent; wherein the transition metal catalyst complex is present at less than 10?3 mole compared to the moles of radically transferable atoms or groups present on the ATRP initiator.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: February 22, 2011
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Wojciech Jakubowski, James Spanswick
  • Patent number: 7825199
    Abstract: Further improvements have been made in processes for controlled polymerization of free radically (co)polymerizable monomers mediated by a transition metal complex participating in a redox reaction which involves transfer of a radically transferable atom or group to and from an initiator or dormant polymer and the growing active polymer chain ends. Two improvements involve the choice of counterion in the transition metal complex. In one improvement the transition metal is held in close conjunction with a solid support through interaction with a counterion directly attached to the support. This cognition also allows for improvements in catalyst utilization including catalyst recovery and recycle. In another improvement, particularly suitable for controlled polymerization of certain monomers with an expanded range of transition metals, the function of counterion and ligand in the development of the transition metal based catalyst is superseded by use of salt containing a soluble organic counterion.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: November 2, 2010
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Scott G. Gaynor, Hyun-jong Paik, Tomislav Pintauer, Jeff Pyun, Jian Qiu, Mircea Teodorescu, Jianhui Xia, Xuan Zhang, Peter J. Miller
  • Publication number: 20100273906
    Abstract: The present disclosure describes a two-step batch dispersion polymerization process for the preparation of substantially uniformed-sized functional (co)polymer particles. The first step of the process includes polymerizing at least one first radically (co)polymerizable monomer by a free radical polymerization process to form a (co)polymer in a stable colloidal dispersion and the second step includes polymerizing the at first radically (co)polymerizable monomer or an additional radically (co)polymerizable monomer in the stable colloidal dispersion by a living/controlled radical (co)polymerization process.
    Type: Application
    Filed: May 23, 2008
    Publication date: October 28, 2010
    Inventors: Krzysztof Matyjaszewski, Ke Min, James Spanswick
  • Publication number: 20100249271
    Abstract: A core-shell composite particle for incorporation into a composite wherein the composite has improved transparency is disclosed. The core-shell composite particle includes a core material having a first refractive index and a shell material having a second refractive index where the core-shell particle has an effective refractive index determined by the first refractive index and the second refractive index. The effective refractive index is substantially equal to the refractive index of the envisioned embedding medium. Methods of forming the core-shell particles are also disclosed.
    Type: Application
    Filed: May 23, 2008
    Publication date: September 30, 2010
    Applicant: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Lindsay Bombalski, Michael R. Bockstaller
  • Patent number: 7678869
    Abstract: A polymerization process comprising initiating a first polymerization of monomers using an initiator functionalized with an ATRP initiating site, wherein the first polymerization is selected from the group of cationic polymerization, anionic polymerization, conventional free radical polymerization, metathesis, ring opening polymerization, cationic ring opening polymerization, and coordination polymerization to form a macroinitiator comprising an ATRP initiating site and further initiating an ATRP polymerization of radically polymerizable monomers using the macroinitiator comprising an ATRP initiating site. Novel block copolymers may be formed by the disclosed method.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: March 16, 2010
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Scott G. Gaynor, Simion Coca, Yoshiki Nakagawa
  • Publication number: 20090312505
    Abstract: Polymerization processes of the present invention comprise low catalyst concentration. Embodiments include a polymerization process comprising polymerizing free radically (co)polymerizable monomers in a polymerization medium comprising one or more radically (co)polymerizable monomers, a transition metal catalyst complex capable of participating in a one electron redox reaction with an ATRP initiator; a free radical initiator; and an ATRP initiator; (wherein the concentration of transition metal catalyst complex in the polymerization medium is less than 100 ppm). Further embodiments include a polymerization process, comprising polymerizing one or more radically (co)polymerizable monomers in the presence of at least one transition metal catalyst complex; and an ATRP initiator; and a reducing agent; wherein the transition metal catalyst complex is present at less than 10?3 mole compared to the moles of radically transferable atoms or groups present on the ATRP initiator.
    Type: Application
    Filed: August 28, 2006
    Publication date: December 17, 2009
    Inventors: Krzysztof Matyjaszewski, Wojciech Jakubowski, James Spanswick
  • Patent number: 7572874
    Abstract: Improved processes for atom (or group) transfer radical polymerization (ATRP) and novel polymers have been developed and are described. In certain embodiments, novel copolymers comprising a least one polymeric branch or polymeric block with a predominantly alternating monomer sequence are described. Novel copolymers comprising a least one polymeric branch or polymeric block with a gradient monomer structure are described. Additionally, novel copolymers comprising a least one polymeric branch or polymeric block with a predominantly periodic monomer sequence are also described. Novel copolymers having a water soluble backbone and at least two hydrophobic polymeric branches grafted to the water soluble backbone are also described.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: August 11, 2009
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Simion Coca, Scott G. Gaynor, Dorota Greszta, Timothy E. Patten, Jin-Shan Wang, Jianhui Xia