Patents by Inventor Kuan-Ching Lee

Kuan-Ching Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210358825
    Abstract: A method for forming an underfill structure and semiconductor packages including the underfill structure are disclosed. In an embodiment, the semiconductor package may include a package including an integrated circuit die; an interposer bonded to the integrated circuit die by a plurality of die connectors; and an encapsulant surrounding the integrated circuit die. The semiconductor package may further include a package substrate bonded to the interposer by a plurality of conductive connectors; a first underfill between the package and the package substrate, the first underfill having a first coefficient of thermal expansion (CTE); and a second underfill surrounding the first underfill, the second underfill having a second CTE less than the first CTE.
    Type: Application
    Filed: July 26, 2021
    Publication date: November 18, 2021
    Inventors: Yu-Wei Chen, Li-Chung Kuo, Ying-Ching Shih, Szu-Wei Lu, Jing-Cheng Lin, Long Hua Lee, Kuan-Yu Huang
  • Patent number: 11121050
    Abstract: In order to prevent cracks from occurring at the corners of semiconductor dies after the semiconductor dies have been bonded to other substrates, an opening is formed adjacent to the corners of the semiconductor dies, and the openings are filled and overfilled with a buffer material that has physical properties that are between the physical properties of the semiconductor die and an underfill material that is placed adjacent to the buffer material.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: September 14, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuan-Yu Huang, Chih-Wei Wu, Li-Chung Kuo, Long Hua Lee, Sung-Hui Huang, Ying-Ching Shih, Pai Yuan Li
  • Publication number: 20210273070
    Abstract: A semiconductor device and method of manufacture are provided. In some embodiments a treatment process is utilized to treat a work function layer. The treatment prevents excessive oxidation of the work function layer during subsequent processing steps, such as application of a subsequent photoresist material, thereby allowing the work function layer to be thinner than otherwise.
    Type: Application
    Filed: June 1, 2020
    Publication date: September 2, 2021
    Inventors: Chia-Ching Lee, Hung-Chin Chung, Chung-Chiang Wu, Hsuan-Yu Tung, Kuan-Chang Chiu, Chien-Hao Chen, Chi On Chui
  • Publication number: 20210119481
    Abstract: An intelligent off-peak power distribution system may include a plurality of power consumption ends powered by a plurality of batteries. Each of the batteries is individually programmed with an electronic code, and the batteries are charged by at least a power supply end, and the charging method thereof is to use off-peak power to perform charging during off-peak hour. At least a distribution vehicle is provided to transport the batteries between the power consumption ends and the power supply end, and a smart communication network is communicated with the power consumption ends, the distribution vehicle, and the power supply end. The batteries are available and transported between the power consumption ends by the distribution vehicle so that the distribution vehicle departing from the power supply end is configured to distribute power to more power consumption ends in a single ride, thereby reducing the power and transportation costs.
    Type: Application
    Filed: October 22, 2019
    Publication date: April 22, 2021
    Applicant: AVERTRONICS INC.
    Inventors: Austin Lai, Kuan-Ching Lee, Hong-Min Chen, Kai-Yang Cheng, Wei-Fu Hsu, Hui-Ping Yang, Ya-Ling Lien
  • Patent number: 10826320
    Abstract: A solar power system may comprise a solar panel set, a controller, a lithium battery set, and at least a DC load. The controller has a control unit built therein to control a double-contact relay, a single-contact relay, and a transformer. The rated voltage of the solar panel set is higher than the rated voltage of the lithium battery set between 115% and 130%. When the actual voltage of the solar panel set is lower than 115% of the rated voltage of the lithium battery set, the solar panel set is configured to low-loss charge the lithium battery set under the low illumination condition. When the actual voltage of the solar panel set is higher than 115% of the rated voltage of the lithium battery set, the solar panel set under the high illumination condition is adapted to have voltage-drop through the transformer and high-efficiently charge the lithium battery set.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: November 3, 2020
    Inventors: Austin Lai, Kai-Yang Cheng, Wei-Fu Hsu, Kuan-Ching Lee, Hui-Ping Yang
  • Publication number: 20200259362
    Abstract: A solar power system may comprise a solar panel set, a controller, a lithium battery set, and at least a DC load. The controller has a control unit built therein to control a double-contact relay, a single-contact relay, and a transformer. The rated voltage of the solar panel set is higher than the rated voltage of the lithium battery set between 115% and 130%. When the actual voltage of the solar panel set is lower than 115% of the rated voltage of the lithium battery set, the solar panel set is configured to low-loss charge the lithium battery set under the low illumination condition. When the actual voltage of the solar panel set is higher than 115% of the rated voltage of the lithium battery set, the solar panel set under the high illumination condition is adapted to have voltage-drop through the transformer and high-efficiently charge the lithium battery set.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 13, 2020
    Applicant: AVERTRONICS INC.
    Inventors: Austin Lai, Kai-Yang Cheng, Wei-Fu Hsu, Kuan-Ching Lee, Hui-Ping Yang
  • Publication number: 20060197952
    Abstract: A high-sensitivity SPR (surface plasmon resonance) sensor includes at least a prism having a first surface on which a metallic layer and a metallic nanoparticle layer are sequentially formed. A light source projects an incident light into the prism through a second surface of the prism. The light is reflected by the metallic layer and the metallic nanoparticle layer and leaves the prism through a third surface of the prism. A light detector detects the reflected light. The SPR sensor has an extensive detection range as compared with the conventional ones and is applicable in the detection of gas, chemical substance, and biomolecule. Moreover, the SPR sensor is advantageous in arranging fabrication process consistently, controlling film thickness, improving product quality, and decreasing fabrication cost.
    Type: Application
    Filed: September 12, 2003
    Publication date: September 7, 2006
    Inventors: Shean-Jen Chen, Chun-Yu Lin, Fan-Ching Chien, K.T. Huang, W.P. Hu, Wen-Yih Chen, Kuan-Ching Lee, Wen-Hsien Li