Patents by Inventor Kuan-Hao Chen
Kuan-Hao Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11610805Abstract: A method includes, through a backside of a substrate, removing a portion of a gate structure to form a trench that isolates the gate structure in two portions. The method further includes depositing a sacrificial material within the trench and conformally along sidewalls of the trench, filling a remainder of the trench with a first dielectric material, partially removing the sacrificial material to leave an opening between the first dielectric material and the gate structure, and filling the opening with a work-function metal.Type: GrantFiled: February 26, 2021Date of Patent: March 21, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Wang-Chun Huang, Yu-Xuan Huang, Hou-Yu Chen, Kuan-Lun Cheng, Chih-Hao Wang
-
Publication number: 20230061555Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a dielectric feature comprising a first dielectric layer and a second dielectric layer, the first dielectric layer has a first sidewall and a second sidewall opposing the first sidewall, and the second dielectric layer is in contact with at least a portion of the first sidewall and at least a portion of the second sidewall. The structure also includes a first semiconductor layer adjacent the first sidewall, wherein the first semiconductor layer is in contact with the second dielectric layer. The structure further includes a first gate electrode layer surrounding at least three surfaces of the first semiconductor layer, wherein the first gate electrode layer has a surface facing the second dielectric layer, and the surface extends over a plane defined by an interface between the second dielectric layer and the first semiconductor layer.Type: ApplicationFiled: August 27, 2021Publication date: March 2, 2023Inventors: Guan-Lin CHEN, Kuo-Cheng CHIANG, Shi Ning JU, Jung-Chien CHENG, Chih-Hao WANG, Kuan-Lun CHENG
-
Publication number: 20230066360Abstract: A method includes forming a plurality of dielectric layers, forming a lower portion of a seal ring including a plurality of metal layers, each extending into one of the plurality of dielectric layers, depositing a first passivation layer over the plurality of dielectric layers, forming an opening in the first passivation layer, forming a via ring in the opening and physically contacting the lower portion of the seal ring, and forming a metal ring over the first passivation layer and joined to the via ring. The via ring and the metal ring form an upper portion of the seal ring. The metal ring includes an edge portion having a zigzag pattern. The method further includes forming a second passivation layer on the metal ring, and performing a singulation process to form a device die, with the seal ring being proximate edges of the device die.Type: ApplicationFiled: April 13, 2022Publication date: March 2, 2023Inventors: Kuan-Hung Chen, Hong-Seng Shue, Po-Hao Tsai, Mirng-Ji Lii
-
Publication number: 20230050785Abstract: A semiconductor structure and a manufacturing method thereof are provided. The method includes the following steps. A plurality of conductive balls is placed over a circuit substrate, where each of the conductive balls is placed over a contact area of one of a plurality of contact pads that is accessibly revealed by a patterned mask layer. The conductive balls are reflowed to form a plurality of external terminals with varying heights connected to the contact pads of the circuit substrate, where a first external terminal of the external terminals formed in a first region of the circuit substrate and a second external terminal of the external terminals formed in a second region of the circuit substrate are non-coplanar.Type: ApplicationFiled: August 12, 2021Publication date: February 16, 2023Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ting-Yu Yeh, Ching-He Chen, Kuo-Chiang Ting, Weiming Chris Chen, Chia-Hao Hsu, Kuan-Yu Huang, Shu-Chia Hsu
-
Patent number: 11581415Abstract: A semiconductor structure includes a first stack of semiconductor layers disposed over a semiconductor substrate, where the first stack of semiconductor layers includes a first SiGe layer and a plurality of Si layers disposed over the first SiGe layer and the Si layers are substantially free of Ge, and a second stack of semiconductor layers disposed adjacent to the first stack of semiconductor layers, where the second stack of semiconductor layers includes the first SiGe layer and a plurality of second SiGe layers disposed over the first SiGe layer, and where the first SiGe layer and the second SiGe layers have different compositions. The semiconductor structure further includes a first metal gate stack interleaved with the first stack of semiconductor layers to form a first device and a second metal gate stack interleaved with the second stack of semiconductor layers to form a second device different from the first device.Type: GrantFiled: January 22, 2021Date of Patent: February 14, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Guan-Lin Chen, Kuo-Cheng Chiang, Shi Ning Ju, Chih-Hao Wang, Kuan-Lun Cheng
-
Publication number: 20230016381Abstract: A semiconductor structure includes a semiconductor fin protruding from a substrate; a gate structure engaging with the semiconductor fin. The semiconductor structure also includes an interlayer dielectric (ILD) layer disposed over the substrate and adjacent to the gate structure, where a top surface of the gate structure is below a top surface of the ILD layer; a first metal layer in direct contact with a top surface of the gate structure; a second metal layer disposed over the first metal layer, where the first metal layer is disposed on bottom and sidewall surfaces of the second metal layer, where the bottom surface of the second metal layer has a concave profile, and where the second metal layer differs from the first metal layer in composition; and a gate contact disposed over the second metal layer.Type: ApplicationFiled: May 6, 2022Publication date: January 19, 2023Inventors: Wei-Cheng Wang, Shih-Hang Chiu, Kuan-Ting Liu, Chi On Chui, Chia-Wei Chen, Jian-Hao Chen
-
Publication number: 20230014998Abstract: A device includes a substrate, a first semiconductor channel over the substrate, a second semiconductor channel over the substrate and laterally offset from the first semiconductor channel, and a third semiconductor channel over the substrate and laterally offset from the second semiconductor channel. A first gate structure, a second gate structure, and a third gate structure are over and lateral surround the first, second, and third semiconductor channels, respectively. A first inactive fin is between the first gate structure and the second gate structure, and a second inactive fin is between the second gate structure and the third gate structure. A bridge conductor layer is over the first, second, and third gate structures, and the first and second inactive fins. A dielectric plug extends from an upper surface of the second inactive fin, through the bridge conductor layer, to at least an upper surface of the bridge conductor layer.Type: ApplicationFiled: July 19, 2021Publication date: January 19, 2023Inventors: Shi-Ning JU, Kuo-Cheng CHIANG, Chih-Hao WANG, Kuan-Lun CHENG, Guan-Lin CHEN, Kuan-Ting PAN
-
Publication number: 20230015912Abstract: The present disclosure is drawn to covers for electronic devices, methods of making the covers, and electronic devices. In one example, described herein is a cover for an electronic device comprising: a substrate comprising a metal; insert molded plastic on at least one surface of the substrate; a passivation layer or a micro-arc oxidation layer applied on at least one surface of the substrate; a coating composition on the passivation layer or the micro-arc oxidation layer; an outmoid decoration layer on the mating composition; a chamfered edge on the substrate, wherein the chamfered edge cuts through the outmoid decoration layer, the coating composition, the passivation layer or the micro-arc oxidation layer, and partially through the substrate; and wherein the chamfered edge comprises; a transparent passivation layer, then an optional sealing layer, and then a transparent or color electrophoretic deposition coating layer.Type: ApplicationFiled: January 7, 2020Publication date: January 19, 2023Applicant: Hewlett-Packard Development Company, L.P.Inventors: Kuan-Ting Wu, Chi Hao Chang, Yung Yun Chen
-
Publication number: 20230010065Abstract: A semiconductor structure and a method of forming the same are provided. In an embodiment, an exemplary semiconductor structure includes a gate structure. The gate structure includes a gate dielectric layer, an n-type work function layer embedded in the gate dielectric layer, a dielectric capping layer embedded in the n-type work function layer, and a p-type work function layer embedded in the dielectric capping layer. A top surface of the gate structure exposes the n-type work function layer, the dielectric capping layer, and the p-type work function layer. The semiconductor structure also includes a first metal cap on the n-type work function layer and a second metal cap on the p-type work function layer. The first metal cap is spaced apart from the second metal cap. without formed on the dielectric capping layer.Type: ApplicationFiled: June 7, 2022Publication date: January 12, 2023Inventors: Shih-Hang Chiu, Chung-Chiang Wu, Wei-Cheng Wang, Chia-Wei Chen, Jian-Hao Chen, Kuan-Ting Liu, Chi On Chui
-
Publication number: 20230011783Abstract: Multi-gate devices and methods for fabricating such are disclosed herein. An exemplary method includes forming an n-type work function layer in a gate trench in a gate structure, wherein the n-type work function layer is formed around first channel layers in a p-type gate region and around second channel layers in an n-type gate region, forming a first metal fill layer in a first gate trench over the n-type work function layer in the p-type gate region and in a second gate trench over the n-type work function layer in the n-type gate region, removing the first metal fill layer from the p-type gate region, removing the n-type work function layer from the p-type gate region, forming a p-type work function layer in the first gate trench of the p-type gate region, and forming a second metal fill layer in the first gate trench of the p-type gate region.Type: ApplicationFiled: May 6, 2022Publication date: January 12, 2023Inventors: Shih-Hang Chiu, Kuan-Ting Liu, Chi On Chui, Chia-Wei Chen, Jian-Hao Chen, Cheng-Lung Hung
-
Patent number: 11553612Abstract: A foldable hinge is described herein that includes a plurality of interconnected sliding links, wherein each of the interconnected sliding links comprise at least one curved extruding prong and at least one curved rail. The at least one curved rail of a first interconnected sliding link can be coupled to the at least one curved extruding prong of a second interconnected sliding link to form a torque engine. Additionally, the interconnected sliding links can be rotatable based on a pressure applied to the interconnected sliding links. The foldable hinge can also include a plurality of shafts coupled to the plurality of interconnected sliding links, wherein each shaft is coupled to a separate interconnected sliding link.Type: GrantFiled: April 20, 2017Date of Patent: January 10, 2023Assignee: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.Inventors: Wei-Chung Chen, Kuan-Ting Wu, Chi-Hao Chang
-
Patent number: 11538805Abstract: A structure includes a semiconductor substrate including a first semiconductor region and a second semiconductor region, a first transistor in the first semiconductor region, and a second transistor in the second semiconductor region. The first transistor includes a first gate dielectric over the first semiconductor region, a first work function layer over and contacting the first gate dielectric, and a first conductive region over the first work function layer. The second transistor includes a second gate dielectric over the second semiconductor region, a second work function layer over and contacting the second gate dielectric, wherein the first work function layer and the second work function layer have different work functions, and a second conductive region over the second work function layer.Type: GrantFiled: November 4, 2020Date of Patent: December 27, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Kuan-Chang Chiu, Chia-Ching Lee, Chien-Hao Chen, Hung-Chin Chung, Hsien-Ming Lee, Chi On Chui, Hsuan-Yu Tung, Chung-Chiang Wu
-
Patent number: 11538927Abstract: Semiconductor structures and the manufacturing method thereof are disclosed. An exemplary manufacturing method includes forming a stack of a first type and a second type epitaxial layers on a frontside of a semiconductor substrate, patterning the stack to form a fin-shaped structure, depositing a dielectric layer on sidewalls of the fin-shaped structure, and recessing the dielectric layer to expose a top portion of the fin-shaped structure. A top surface of the recessed dielectric layer is above a bottom surface of the stack. The exemplary manufacturing method also includes forming a gate structure over the top portion of the fin-shaped structure, etching the semiconductor substrate from a backside of the semiconductor substrate, and etching at least a bottommost first type epitaxial layer and a bottommost second type epitaxial layer through the trench.Type: GrantFiled: June 2, 2021Date of Patent: December 27, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Kuo-Cheng Chiang, Yen-Ming Chen, Jung-Chien Cheng, Chih-Hao Wang, Kuan-Lun Cheng
-
Publication number: 20220406464Abstract: A prediction method and system of a low blood pressure is provided, including: obtaining a plurality of feature sequence values; selecting two of the feature sequence values from the feature sequence values according to a time ratio relationship; calculating a relation coefficient according to the selected two feature sequence values by a weighting process; repeating to select the new feature sequence values and the corresponding relation coefficient and to assign the new feature sequence values and the relation coefficient into the input group until the feature sequence values conforming to the time ratio relationship are traversed; and obtaining a training result by substituting the input group into a low blood pressure prediction model.Type: ApplicationFiled: October 13, 2021Publication date: December 22, 2022Inventors: Hsiang-Wei HU, Chih-Hao LIU, Chi-Hin UN, Kuan-Yu CHEN, Jiun-Yi YANG
-
Patent number: 11532744Abstract: Semiconductor devices and methods of forming the same are provided. A semiconductor device according to the present disclosure includes a first gate structure disposed over a first backside dielectric feature, a second gate structure disposed over a second backside dielectric feature, a gate cut feature extending continuously from between the first gate structure and the second gate structure to between the first backside dielectric feature and the second backside dielectric feature, and a liner disposed between the gate cut feature and the first backside dielectric feature and between the gate cut feature and the second backside dielectric feature.Type: GrantFiled: February 1, 2021Date of Patent: December 20, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chun-Yuan Chen, Pei-Yu Wang, Huan-Chieh Su, Yi-Hsun Chiu, Cheng-Chi Chuang, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
-
Patent number: 11527534Abstract: Semiconductor structures and the manufacturing method thereof are disclosed. An exemplary semiconductor structure according to the present disclosure includes a first base portion and a second base portion, an isolation feature sandwiched between the first base portion and the second base portion, a center dielectric fin over the isolation feature, a first anti-punch-through (APT) feature over the first base portion, a second APT feature over the second base portion, a first stack of channel members over the first APT feature, and a second stack of channel members over the second APT feature. The center dielectric fin is sandwiched between the first stack of channel members and the second stack of channel members as well as between the first APT feature and the second APT feature.Type: GrantFiled: January 6, 2021Date of Patent: December 13, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Jung-Chien Cheng, Shi Ning Ju, Guan-Lin Chen, Kuo-Cheng Chiang, Chih-Hao Wang, Kuan-Lun Cheng
-
Publication number: 20220384255Abstract: Interconnect structures and methods and apparatuses for forming the same are disclosed. In an embodiment, a method includes supplying a process gas to a process chamber; igniting the process gas into a plasma in the process chamber; reducing a pressure of the process chamber to less than 0.3 mTorr; and after reducing the pressure of the process chamber, depositing a conductive layer on a substrate in the process chamber.Type: ApplicationFiled: August 9, 2022Publication date: December 1, 2022Inventors: Chun-Hsu Yang, Chun-Sheng Chen, Nai-Hao Yang, Kuan-Chia Chen, Huei-Wen Hsieh, Yu-Cheng Hsiao, Che-Wei Tien
-
Publication number: 20220384620Abstract: Semiconductor structures and methods of forming the same are provided. A semiconductor structure according to the present disclosure includes at least one first semiconductor element and at least one second semiconductor element over a substrate, a dielectric fin disposed between the at least one first semiconductor element and the at least one second semiconductor element, a first work function metal layer wrapping around each of the at least one first semiconductor element and extending continuously from the at least one first semiconductor element to a top surface of the dielectric fin, and a second work function metal layer disposed over the at least one second semiconductor element and the first work function metal layer.Type: ApplicationFiled: August 10, 2022Publication date: December 1, 2022Inventors: Wang-Chun Huang, Hou-Yu Chen, Kuan-Lun Cheng, Chih-Hao Wang
-
Publication number: 20220384429Abstract: Gate cutting techniques disclosed herein form gate isolation fins to isolate metal gates of multigate devices from one another before forming the multigate devices, and in particular, before forming the metal gates of the multigate devices. An exemplary device includes a first multigate device having first source/drain features and a first metal gate that surrounds a first channel layer and a second multigate device having second source/drain features and a second metal gate that surrounds a second channel layer. A gate isolation fin, which separates the first metal gate and the second metal gate, includes a first dielectric layer having a first dielectric constant and a second dielectric layer having a second dielectric constant disposed over the first dielectric layer. The second dielectric constant is less than the first dielectric constant. A gate isolation end cap may be disposed on the gate isolation fin to provide additional isolation.Type: ApplicationFiled: August 10, 2022Publication date: December 1, 2022Inventors: Kuo-Cheng Chiang, Shi Ning Ju, Guan-Lin Chen, Kuan-Ting Pan, Chih-Hao Wang
-
Publication number: 20220384250Abstract: A semiconductor structure includes a gate structure surrounding a plurality of channels and a cut feature that electrically isolates two separate portions of the gate structure. The cut feature comprises an outer layer having a work-function metal, and an inner layer comprising a dielectric material. The cut feature extends above a top surface of the gate structure.Type: ApplicationFiled: August 9, 2022Publication date: December 1, 2022Inventors: Wang-Chun Huang, Yu-Xuan Huang, Hou-Yu Chen, Kuan-Lun Cheng, Chih-Hao Wang