Patents by Inventor Kuan Liang

Kuan Liang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200051950
    Abstract: An apparatus and method is provided for controlling a propagation of a bond wave during semiconductor processing. The apparatus has a first chuck to selectively retain a first workpiece. A second chuck selectively retains a second workpiece. The first and second chucks selectively secure at least a periphery of the respective first workpiece and second workpiece. An air vacuum is circumferentially located in a region between the first chuck and second chuck. The air vacuum is configured to induce a vacuum between the first workpiece and second workpiece to selectively bring the first workpiece and second workpiece together from a propagation point. The air vacuum can be localized air vacuum guns, a vacuum disk, or an air curtain positioned about the periphery of the region between the first chuck and second chuck. The air curtain induces a lower pressure within the region between the first and second chucks.
    Type: Application
    Filed: October 16, 2019
    Publication date: February 13, 2020
    Inventors: Xin-Hua Huang, Kuan-Liang Liu, Kuo Liang Lu, Ping-Yin Liu
  • Patent number: 10553474
    Abstract: Various embodiments of the present application are directed towards a method for forming a semiconductor-on-insulator (SOI) substrate with a thick device layer and a thick insulator layer. In some embodiments, the method includes forming an insulator layer covering a handle substrate, and epitaxially forming a device layer on a sacrificial substrate. The sacrificial substrate is bonded to a handle substrate, such that the device layer and the insulator layer are between the sacrificial and handle substrates, and the sacrificial substrate is removed. The removal includes performing an etch into the sacrificial substrate until the device layer is reached. Because the device layer is formed by epitaxy and transferred to the handle substrate, the device layer may be formed with a large thickness. Further, because the epitaxy is not affected by the thickness of the insulator layer, the insulator layer may be formed with a large thickness.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: February 4, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Ta Wu, Chia-Shiung Tsai, Jiech-Fun Lu, Kuan-Liang Liu, Shih-Pei Chou, Yu-Hung Cheng, Yeur-Luen Tu
  • Patent number: 10497667
    Abstract: An apparatus and method is provided for controlling a propagation of a bond wave during semiconductor processing. The apparatus has a first chuck to selectively retain a first workpiece. A second chuck selectively retains a second workpiece. The first and second chucks selectively secure at least a periphery of the respective first workpiece and second workpiece. An air vacuum is circumferentially located in a region between the first chuck and second chuck. The air vacuum is configured to induce a vacuum between the first workpiece and second workpiece to selectively bring the first workpiece and second workpiece together from a propagation point. The air vacuum can be localized air vacuum guns, a vacuum disk, or an air curtain positioned about the periphery of the region between the first chuck and second chuck. The air curtain induces a lower pressure within the region between the first and second chucks.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: December 3, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Xin-Hua Huang, Kuan-Liang Liu, Kuo Liang Lu, Ping-Yin Liu
  • Patent number: 10453832
    Abstract: A three-dimensional (3D) integrated circuit (IC) includes a first IC die and a second IC die. The first IC die includes a first semiconductor substrate, and a first interconnect structure over the first semiconductor substrate. The second IC die includes a second semiconductor substrate, and a second interconnect structure that separates the second semiconductor substrate from the first interconnect structure. A seal ring structure separates the first interconnect structure from the second interconnect structure and perimetrically surrounds a gas reservoir between the first IC die and second IC die. The seal ring structure includes a sidewall gas-vent opening structure configured to allow gas to pass between the gas reservoir and an ambient environment surrounding the 3D IC.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: October 22, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Ming Wu, Kuan-Liang Liu, Wen-De Wang, Yung-Lung Lin
  • Publication number: 20190287860
    Abstract: A transistor structure includes a source region and a drain region disposed in a substrate, extending along a first direction. A polysilicon layer is disposed over the substrate, extending along a second direction perpendicular to the first direction, wherein the polysilicon layer includes a first edge region, a channel region and a second edge region formed as a gate region between the source region and the drain region in a plane view. The polysilicon layer has at least a first opening pattern at the first edge region having a first portion overlapping with the gate region; and at least a second opening pattern at the second edge region having a second portion overlapping with the gate region.
    Type: Application
    Filed: May 31, 2019
    Publication date: September 19, 2019
    Applicant: United Microelectronics Corp.
    Inventors: Shih-Yin Hsiao, Ching-Chung Yang, Kuan-Liang Liu
  • Patent number: 10410892
    Abstract: A method of semiconductor wafer bonding and system thereof are proposed. A first alignment mark of a first semiconductor wafer is aligned with a second alignment mark of a second semiconductor wafer. A partial attachment is performed between the first semiconductor wafer and the second semiconductor wafer. A scanning is performed along a direction substantially parallel to a surface of the first semiconductor wafer. It is determined if a bonding defect of the partially attached first semiconductor wafer and the second semiconductor wafer exists.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: September 10, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Kuan-Liang Lu, Xin-Hua Huang, Yeur-Luen Tu
  • Publication number: 20190256352
    Abstract: A method of manufacturing a semiconductor structure includes receiving a first substrate including a first dielectric layer disposed over the first substrate and a first conductive structure surrounded by the first dielectric layer; receiving a second substrate including a second dielectric layer disposed over the second substrate and a second conductive structure surrounded by the second dielectric layer; bonding the first dielectric layer with the second dielectric layer; and bonding the first conductive structure with the second conductive structure.
    Type: Application
    Filed: May 6, 2019
    Publication date: August 22, 2019
    Inventors: HUNG-HUA LIN, PING-YIN LIU, KUAN-LIANG LIU, CHIA-SHIUNG TSAI, ALEXANDER KALNITSKY
  • Patent number: 10373872
    Abstract: A transistor structure includes a source region and a drain region disposed in a substrate, extending along a first direction. A polysilicon layer is disposed over the substrate, extending along a second direction perpendicular to the first direction, wherein the polysilicon layer includes a first edge region, a channel region and a second edge region formed as a gate region between the source region and the drain region in a plane view. The polysilicon layer has at least a first opening pattern at the first edge region having a first portion overlapping with the gate region; and at least a second opening pattern at the second edge region having a second portion overlapping with the gate region.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: August 6, 2019
    Assignee: United Microelectronics Corp.
    Inventors: Shih-Yin Hsiao, Ching-Chung Yang, Kuan-Liang Liu
  • Patent number: 10373876
    Abstract: A method for manufacturing a semiconductor device and a device manufactured using the same are provided. According to a method approach of the embodiment, a substrate having at least a first area with a plurality of polysilicon gates and a second area adjacent to the first area is provided. A contact etch stop layer (CESL) over the polysilicon gates of the first area is formed, and the CESL extends to the second area. Then, a dielectric layer is formed on the CESL, and a nitride layer is formed on the dielectric layer. The nitride layer is patterned to expose the dielectric layer in the first area and to form a pattern of dummy nitrides on the dielectric layer in the second area.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: August 6, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Yin Hsiao, Kuan-Liang Liu
  • Patent number: 10280076
    Abstract: A semiconductor structure includes a first substrate including a cavity extended into the first substrate, a device disposed within the cavity, a first dielectric layer disposed over the first substrate and a first conductive structure surrounded by the first dielectric layer, and a second substrate including a second dielectric layer disposed over the second substrate and a second conductive structure surrounded by the second dielectric layer, wherein the first conductive structure is bonded with the second conductive structure and the first dielectric layer is bonded with the second dielectric layer to seal the cavity.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: May 7, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hung-Hua Lin, Ping-Yin Liu, Kuan-Liang Liu, Chia-Shiung Tsai, Alexander Kalnitsky
  • Publication number: 20190122927
    Abstract: An interconnect structure for an integrated circuit, such as a three dimensional integrated circuit (3DIC), and a method of forming the same is provided. An example interconnect structure includes a substrate, a through via extending through the substrate, and a liner disposed between the substrate and the through via. The substrate includes a tapered profile portion. The tapered profile portion abuts the liner.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 25, 2019
    Inventors: Jiung Wu, Kuan-Liang Lai, Ming-Tsu Chung, Hong-Ye Shih, Ku-Feng Yang, Tsang-Jiuh Wu, Wen-Chih Chiou, Shin-Puu Jeng, Chen-Hua Yu
  • Publication number: 20190115260
    Abstract: A transistor structure includes a source region and a drain region disposed in a substrate, extending along a first direction. A polysilicon layer is disposed over the substrate, extending along a second direction perpendicular to the first direction, wherein the polysilicon layer includes a first edge region, a channel region and a second edge region formed as a gate region between the source region and the drain region in a plane view. The polysilicon layer has at least a first opening pattern at the first edge region having a first portion overlapping with the gate region; and at least a second opening pattern at the second edge region having a second portion overlapping with the gate region.
    Type: Application
    Filed: November 15, 2017
    Publication date: April 18, 2019
    Applicant: United Microelectronics Corp.
    Inventors: Shih-Yin Hsiao, Ching-Chung Yang, Kuan-Liang Liu
  • Publication number: 20190109125
    Abstract: Some embodiments relate to a three-dimensional (3D) integrated circuit (IC). The 3D IC includes a first IC die comprising a first semiconductor substrate, and a first interconnect structure over the first semiconductor substrate. The 3D IC also includes a second IC die comprising a second semiconductor substrate, and a second interconnect structure that separates the second semiconductor substrate from the first interconnect structure. A seal ring structure separates the first interconnect structure from the second interconnect structure and perimetrically surrounds a gas reservoir between the first IC die and second IC die. The seal ring structure includes a sidewall gas-vent opening structure configured to allow gas to pass between the gas reservoir and an ambient environment surrounding the 3D IC.
    Type: Application
    Filed: November 27, 2018
    Publication date: April 11, 2019
    Inventors: Kuo-Ming Wu, Kuan-Liang Liu, Wen-De Wang, Yung-Lung Lin
  • Publication number: 20190096848
    Abstract: An apparatus and method is provided for controlling a propagation of a bond wave during semiconductor processing. The apparatus has a first chuck to selectively retain a first workpiece. A second chuck selectively retains a second workpiece. The first and second chucks selectively secure at least a periphery of the respective first workpiece and second workpiece. An air vacuum is circumferentially located in a region between the first chuck and second chuck. The air vacuum is configured to induce a vacuum between the first workpiece and second workpiece to selectively bring the first workpiece and second workpiece together from a propagation point. The air vacuum can be localized air vacuum guns, a vacuum disk, or an air curtain positioned about the periphery of the region between the first chuck and second chuck. The air curtain induces a lower pressure within the region between the first and second chucks.
    Type: Application
    Filed: March 26, 2018
    Publication date: March 28, 2019
    Inventors: Xin-Hua Huang, Kuan-Liang Liu, Kuo Liang Lu, Ping-Yin Liu
  • Publication number: 20190031876
    Abstract: A transparent impact resistant polyester composition is disclosed. The polyester composition comprises 100 parts by weight of polyester, and 0.1 to 6.0 parts by weight of styrene butadiene block copolymer, wherein a molecular weight of the styrene butadiene block copolymer is in the range from 100,000 to 200,000, and an intrinsic viscosity of the styrene butadiene block copolymer is in the range from 0.1 to 0.6.
    Type: Application
    Filed: May 10, 2018
    Publication date: January 31, 2019
    Inventors: Li-Ling CHANG, Kuan-Liang WEI, Chuan-Hao HSU, Chieh-Ling CHEN
  • Patent number: 10163705
    Abstract: An interconnect structure for an integrated circuit, such as a three dimensional integrated circuit (3DIC), and a method of forming the same is provided. An example interconnect structure includes a substrate, a through via extending through the substrate, and a liner disposed between the substrate and the through via. The substrate includes a tapered profile portion. The tapered profile portion abuts the liner.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jiung Wu, Kuan-Liang Lai, Ming-Tsu Chung, Hong-Ye Shih, Ku-Feng Yang, Tsang-Jiuh Wu, Wen-Chih Chiou, Shin-Puu Jeng, Chen-Hua Yu
  • Patent number: 10147800
    Abstract: A method of fabricating a transistor with reduced hot carrier injection effects includes providing a substrate covered by a gate material layer. Later, the gate material layer is patterned into a gate electrode. Then, a mask layer is formed to cover part of the gate electrode and expose two ends of the gate electrode. Finally, a first implantation process is performed to implant dopants through the exposed two ends of the gate electrode into the substrate directly under the gate electrode to form two LDD regions by taking the mask layer as a mask.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: December 4, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kuan-Liang Liu, Shih-Yin Hsiao, Ching-Chung Yang
  • Publication number: 20180269161
    Abstract: A hybrid-bonding structure and a method for forming a hybrid-bonding structure are provided. The hybrid-bonding structure includes a first semiconductor substrate, a first conductive line and a first dielectric dummy pattern. The first conductive line is formed over the first semiconductor substrate. A surface of the first conductive line is configured to hybrid-bond with a second conductive line over a second semiconductor substrate. The first dielectric dummy pattern is formed over the first semiconductor substrate and embedded in the first conductive line.
    Type: Application
    Filed: March 17, 2017
    Publication date: September 20, 2018
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Ming WU, Kuan-Liang LIU, Pao-Tung CHEN
  • Publication number: 20180233416
    Abstract: A method for manufacturing a semiconductor device and a device manufactured using the same are provided. According to a method approach of the embodiment, a substrate having at least a first area with a plurality of polysilicon gates and a second area adjacent to the first area is provided. A contact etch stop layer (CESL) over the polysilicon gates of the first area is formed, and the CESL extends to the second area. Then, a dielectric layer is formed on the CESL, and a nitride layer is formed on the dielectric layer. The nitride layer is patterned to expose the dielectric layer in the first area and to form a pattern of dummy nitrides on the dielectric layer in the second area.
    Type: Application
    Filed: April 16, 2018
    Publication date: August 16, 2018
    Inventors: Shih-Yin Hsiao, Kuan-Liang Liu
  • Publication number: 20180175012
    Abstract: A three-dimensional (3D) integrated circuit (IC) includes a first IC die and a second IC die. The first IC die includes a first semiconductor substrate, and a first interconnect structure over the first semiconductor substrate. The second IC die includes a second semiconductor substrate, and a second interconnect structure that separates the second semiconductor substrate from the first interconnect structure. A seal ring structure separates the first interconnect structure from the second interconnect structure and perimetrically surrounds a gas reservoir between the first IC die and second IC die. The seal ring structure includes a sidewall gas-vent opening structure configured to allow gas to pass between the gas reservoir and an ambient environment surrounding the 3D IC.
    Type: Application
    Filed: August 1, 2017
    Publication date: June 21, 2018
    Inventors: Kuo-Ming Wu, Kuan-Liang Liu, Wen-De Wang, Yung-Lung Lin