Patents by Inventor Kuan-Ting Li

Kuan-Ting Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240150590
    Abstract: A coated substrate for an electronic device can include a substrate, a basecoat layer on the substrate, and an anti-fingerprint topcoat layer on the basecoat layer. The substrate can include a metal or metal alloy. The basecoat layer can include pigment particles and a first one-part thermally cured polymeric resin. The anti-fingerprint topcoat layer can include a second one-part thermally cured polymeric resin and an anti-fingerprint material. The anti-fingerprint material can include a fluoropolymer, a silane, or a combination thereof. The basecoat layer can be cured before applying the anti-fingerprint topcoat layer on the basecoat layer.
    Type: Application
    Filed: March 18, 2021
    Publication date: May 9, 2024
    Inventors: Kuan-Ting WU, Yong-Jun LI, Chi Hao CHANG, Xiao-Jun ZHU
  • Patent number: 9460828
    Abstract: Disclosed is a graphene printed circuit pattern structure including a substrate excellent in electrical insulation and a graphene printed circuit layer provided on the substrate. The graphene printed circuit layer is electrically conductive and has a circuit pattern like an electrical circuit on the circuit board. The graphene printed circuit layer includes surface-modified nanographene platelets, a carrier resin and a filler. The ratio of the particle size of the filler to the thickness of the surface-modified nanographene platelet is 2-1000, and the surface-modified nanographene platelets are dispersed in the carrier resin. The filler is uniformly placed among the surface-modified nanographene platelets so as to enhance effective contact for the surface-modified nanographene platelets. The graphene printed circuit pattern structure provides excellent electrical properties and heat dissipation to achieve protection by preventing electrical elements from overheat.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: October 4, 2016
    Assignee: ENERAGE INC.
    Inventors: Mark Y Wu, Cheng-Yu Hsieh, Jing-Ru Chen, Shu-Ling Hsieh, Kuan-Ting Li
  • Publication number: 20160012936
    Abstract: Disclosed is a graphene printed circuit pattern structure including a substrate excellent in electrical insulation and a graphene printed circuit layer provided on the substrate. The graphene printed circuit layer is electrically conductive and has a circuit pattern like an electrical circuit on the circuit board. The graphene printed circuit layer includes surface-modified nanographene platelets, a carrier resin and a filler. The ratio of the particle size of the filler to the thickness of the surface-modified nanographene platelet is 2-1000, and the surface-modified nanographene platelets are dispersed in the carrier resin. The filler is uniformly placed among the surface-modified nanographene platelets so as to enhance effective contact for the surface-modified nanographene platelets. The graphene printed circuit pattern structure provides excellent electrical properties and heat dissipation to achieve protection by preventing electrical elements from overheat.
    Type: Application
    Filed: October 30, 2014
    Publication date: January 14, 2016
    Inventors: Mark Y. Wu, Cheng-Yu HSIEH, Jing-Ru CHEN, Shu-Ling HSIEH, Kuan-Ting LI
  • Publication number: 20150313041
    Abstract: Disclosed is a graphene dissipation structure including a substrate and a graphene dissipation layer. The substrate has at least two surfaces. One of the surfaces contacts at least one heat source, and another one is not in contact with the heat source and provided with the graphene dissipation layer, which includes surface-modified graphene nanometer sheets, a carrier resin and a filler. The surface-modified graphene nanometer sheets are well dispersed in the carrier resin, and enhanced to contact each other through the filler to form a thermal conductive network. The ratio of the particle size of the filler and the thickness of the graphene nanometer sheets is about 2 to 100. Therefore, the heat absorbed by the substrate from the heat source is transferred to the graphene dissipation layer, and further dissipated to the outside through thermal conduction or radiation, thereby achieving the function of heat dissipation.
    Type: Application
    Filed: January 12, 2015
    Publication date: October 29, 2015
    Inventors: Mark Y. Wu, Cheng-Yu Hsieh, Jing-Ru Chen, Shu-Ling Hsieh, Kuan-Ting Li