Patents by Inventor Kuang Tsan Wu

Kuang Tsan Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11032020
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for clock synchronizing an optical system and multiple leaf systems. In some implementations, an apparatus includes a receiver comprising: a local oscillator laser providing a local oscillator signal, a detector circuit operable to receive a first optical signal and detect first data carried by the first optical signal based on the local oscillator signal, a reference clock circuit supplying a clock signal, a digital signal processor (DSP) operable to receive the first data and supply a control signal to the reference clock circuit based on the first data, the reference clock circuit being operable to adjust the clock signal based on the control signal; and a transmitter operable to output a second optical signal carrying second data, the second data having an associated rate that is based on the clock signal.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: June 8, 2021
    Assignee: Infiriera Corporation
    Inventors: Han H. Sun, Kuang-Tsan Wu, John D. McNicol
  • Patent number: 10992389
    Abstract: Optical network systems and components are disclosed, including a transmitter comprising a digital signal processor receiving a plurality of independent data streams, and supplying a plurality of digital subcarrier outputs, based on the plurality of independent data streams, and configurable to vary the frequency spacing between two or more of the plurality of digital subcarrier outputs; the transmitter configured to output a modulated optical signal including a plurality of optical subcarriers based on the digital subcarrier outputs wherein based on first ones of the plurality of digital outputs, the first one of the plurality of subcarriers is spectrally spaced from the second one of the plurality subcarriers by a first gap, and based on second ones of the plurality of digital outputs, the first one of the plurality of subcarriers is spectrally spaced from the second one of the plurality of subcarriers by a second gap different than the first.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: April 27, 2021
    Assignee: Infinera Corporation
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven Joseph Hand, Han Henry Sun
  • Publication number: 20210119709
    Abstract: Optical network systems are disclosed, including a transmitter comprising a digital signal processor that receives data; circuitry that generate a plurality of electrical signals based on the data; a plurality of filters, each of which receiving a corresponding one of the plurality of electrical signals, a plurality of roll-off factors being associated with a respective one of the plurality of filters; a plurality of digital-to-analog converter circuits that receive outputs from the digital signal processor, the outputs being indicative of outputs from the plurality of filters; a laser that supplies light; and a modulator that receives the light and outputs from the digital-to-analog converter circuits, the modulator supplying a plurality of optical subcarriers based on the outputs of the digital-to-analog converter circuits, such that one of the plurality of optical subcarriers carrying information for clock recovery.
    Type: Application
    Filed: June 26, 2020
    Publication date: April 22, 2021
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven Joseph Hand, Han Henry Sun
  • Publication number: 20210111803
    Abstract: Consistent with the present disclosure a network is provided that includes a primary node and a plurality of secondary nodes. The primary node, as well as each of the secondary nodes, includes a laser that is “shared” between the transmit and receive sections. That is, light output from the laser is used for transmission as well as for coherent detection. In the coherent receiver, the frequency of the primary node laser is detected and, based on such detected frequency, the frequency of the secondary node laser is adjusted to detect the received information or data. Such frequency detection also serves to adjust the transmitted signal frequency, because the laser is shared between the transmit and receive portions in each secondary receiver. Light output from the primary node laser, which is also shared between transmit and receive portions in the primary node, is thus also set to a frequency that permits detection of each of the incoming optical signals by way of coherent detection.
    Type: Application
    Filed: May 11, 2020
    Publication date: April 15, 2021
    Inventors: John D. McNicol, Han Henry Sun, Kuang-Tsan Wu
  • Publication number: 20210111802
    Abstract: Consistent with the present disclosure a network is provided that includes a primary node and a plurality of secondary nodes. The primary node, as well as each of the secondary nodes, includes a laser that is “shared” between the transmit and receive sections. That is, light output from the laser is used for transmission as well as for coherent detection. In the coherent receiver, the frequency of the primary node laser is detected and, based on such detected frequency, the frequency of the secondary node laser is adjusted to detect the received information or data. Such frequency detection also serves to adjust the transmitted signal frequency, because the laser is shared between the transmit and receive portions in each secondary receiver. Light output from the primary node laser, which is also shared between transmit and receive portions in the primary node, is thus also set to a frequency that permits detection of each of the incoming optical signals by way of coherent detection.
    Type: Application
    Filed: May 11, 2020
    Publication date: April 15, 2021
    Inventors: John D. McNicol, Han Henry Sun, Kuang-Tsan Wu
  • Patent number: 10979270
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for transmitting signals with a high data rate. In some implementations, an apparatus includes a first digital signal processor outputting first data at a first data rate. A second digital signal processor outputting second data at a second data rate. A filter circuitry receiving and up-sampling the first and second data. Additionally, the apparatus includes a combiner circuit that receives the first up-sampled data and the second up-sampled data, the combiner circuit combining the first and second up-sampled data to provide a multiplexed output, the multiplexed output having a third data rate that is greater than the first data rate or the second data rate.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: April 13, 2021
    Assignee: Infinera Corporation
    Inventors: Han Sun, Avid Lemus, Ahmed Awadalla, Kuang-Tsan Wu
  • Patent number: 10965439
    Abstract: Methods, systems, transceivers, and apparatus are included for clock synchronizing an optical system and multiple leaf systems. In some implementations, a transceiver includes a receiver and a transmitter. The receiver includes an optical hybrid circuit operable to receive a first modulated optical signal and local oscillator light and to supply optical mixing products based on the first modulated optical signal and the local oscillator light. A photodiode circuit operable to supply an electrical signal based on the optical mixing products. An analog-to-digital conversion circuitry operable to supply digital signals based on the electrical signal. A digital signal processor operable to generate a supply signal based on the digital signals and provide the supply signal to a reference clock circuit for generating a clock signal. The transmitter is operable to output a second modulated optical signal that includes a timing of data based on the clock signal.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: March 30, 2021
    Assignee: Infinera Corporation
    Inventors: Han H. Sun, John D. McNicol, Kuang-Tsan Wu
  • Publication number: 20210091876
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Application
    Filed: September 22, 2019
    Publication date: March 25, 2021
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. Hand, David F. Welsh
  • Publication number: 20210091856
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Application
    Filed: September 22, 2019
    Publication date: March 25, 2021
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. Hand, David F. Welch
  • Publication number: 20200413169
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Application
    Filed: September 22, 2019
    Publication date: December 31, 2020
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. Hand, David F. Welch
  • Publication number: 20200403702
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Application
    Filed: September 22, 2019
    Publication date: December 24, 2020
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. Hand, David F. Welch
  • Publication number: 20200403704
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Application
    Filed: September 22, 2019
    Publication date: December 24, 2020
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. HAND, David F. Welch
  • Publication number: 20200389234
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for clock synchronizing an optical system and multiple leaf systems. In some implementations, a method includes: first data is received from an optical system. The first data is detected using a local oscillator signal provided by a local oscillator laser. The first data is processed using a first sampling rate. A frequency of a clock signal supplied by a reference clock is adjusted based on the processed first data. Second data is transmitted to the optical system at a rate based on the clock signal.
    Type: Application
    Filed: September 20, 2019
    Publication date: December 10, 2020
    Inventors: Han H. Sun, Kuang-Tsan Wu, John D. McNicol
  • Publication number: 20200382216
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Application
    Filed: September 23, 2019
    Publication date: December 3, 2020
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. Hand, David F. Welch
  • Publication number: 20200366376
    Abstract: Optical network systems are disclosed, including a system comprising a transmitter including a digital signal processor operable to receive a plurality of independent data streams and output a plurality of digital signals based on the plurality of independent data streams, digital-to-analog circuitry operable to supply a plurality of analog signals based on the plurality of digital signals, a laser operable to supply an optical signal, a modulator operable to receive the optical signal and supply a modulated optical signal based on the plurality of analog signals, including a plurality of optical subcarriers, each of which being associated with a corresponding one of the plurality of independent data streams, a first one of the plurality of optical subcarriers having a first spectral width and a second one of the plurality of optical subcarriers having a second spectral width different than the first spectral width; and a first and a second receiver.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven Joseph Hand, Han Henry Sun
  • Publication number: 20200351006
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for clock synchronizing an optical system and multiple leaf systems. In some implementations, an apparatus includes a receiver comprising: a local oscillator laser providing a local oscillator signal, a detector circuit operable to receive a first optical signal and detect first data carried by the first optical signal based on the local oscillator signal, a reference clock circuit supplying a clock signal, a digital signal processor (DSP) operable to receive the first data and supply a control signal to the reference clock circuit based on the first data, the reference clock circuit being operable to adjust the clock signal based on the control signal; and a transmitter operable to output a second optical signal carrying second data, the second data having an associated rate that is based on the clock signal.
    Type: Application
    Filed: September 20, 2019
    Publication date: November 5, 2020
    Inventors: Han H. Sun, Kuang-Tsan Wu, John D. McNicol
  • Publication number: 20200336285
    Abstract: Methods, systems, transceivers, and apparatus are included for clock synchronizing an optical system and multiple leaf systems. In some implementations, a transceiver includes a receiver and a transmitter. The receiver includes an optical hybrid circuit operable to receive a first modulated optical signal and local oscillator light and to supply optical mixing products based on the first modulated optical signal and the local oscillator light. A photodiode circuit operable to supply an electrical signal based on the optical mixing products. An analog-to-digital conversion circuitry operable to supply digital signals based on the electrical signal. A digital signal processor operable to generate a supply signal based on the digital signals and provide the supply signal to a reference clock circuit for generating a clock signal. The transmitter is operable to output a second modulated optical signal that includes a timing of data based on the clock signal.
    Type: Application
    Filed: September 20, 2019
    Publication date: October 22, 2020
    Inventors: Han H. Sun, John D. McNicol, Kuang-Tsan Wu
  • Publication number: 20200313775
    Abstract: Consistent with an aspect of the present disclosure, electrical signals or digital subcarriers are generated in a DSP based on independent input data streams. Drive signals are generated based on the digital subcarriers, and such drive signals are applied to an optical modulator, including, for example, a Mach-Zehnder modulator. The optical modulator modulates light output from a laser based on the drive signals to supply optical subcarriers corresponding to the digital subcarriers. These optical subcarriers may be received by optical receivers provided at different locations in an optical communications network, where the optical subcarrier may be processed, and the input data stream associated with such optical subcarrier is output. Accordingly, instead of providing multiple lasers and modulators, for example, data is carried by individual subcarriers output from an optical source including one laser and modulator. Thus, a cost associated with the network may be reduced.
    Type: Application
    Filed: May 8, 2020
    Publication date: October 1, 2020
    Applicant: Infinera Corporation
    Inventors: Kuang-Tsan Wu, Matthew L. Mitchell
  • Publication number: 20200313773
    Abstract: Probabilistic constellation shaping (PCS) is applied to a desired probability distribution over the 2-D constellation points. Constellation points are partitioned into multiple disjoint sets in which all the constellation points within a subset have the same energy level (i.e., amplitude) or distance from the origin on the complex plane. Each of the sets may be further subdivided into smaller disjoint sets of constellation points to facilitate labeling of the constellation points. The sets may be indexed from 0 to the total number of disjoint sets to form an index set. The desired distribution may then be applied over the index set either using a distribution matcher (DM) or using a lookup table. The desired distribution may be generated before forward error correction (FEC) encoding that preserves the generated amplitude distribution through FEC encoding of data bits.
    Type: Application
    Filed: March 14, 2019
    Publication date: October 1, 2020
    Inventors: Mehdi Torbatian, Han Henry Sun, Kuang-Tsan Wu
  • Publication number: 20200287621
    Abstract: A transmitter can include a laser operable to output an optical signal; a digital signal processor operable to receive user data and provide electrical signals based on the data; and a modulator operable to modulate the optical signal to provide optical subcarriers based on the electrical signals. A first one of the subcarriers carriers carries first TDMA encoded information and second TDMA encoded information, such that the first TDMA encoded information is indicative of a first portion of the data and is carried by the first one of the subcarriers during a first time slot, and the second TDMA encoded information is indicative of a second portion of the data and is carried by the first one of the subcarriers during a second time slot. The first TDMA encoded information is associated with a first node remote from the transmitter and the second TDMA encoded information is associated with a second node remote from the transmitter.
    Type: Application
    Filed: March 4, 2020
    Publication date: September 10, 2020
    Inventors: Amir Jafari, Kuang-Tsan Wu, David F. Welch, Steven Joseph Hand, Mohamed Osman