Patents by Inventor Kui-hyun Kim

Kui-hyun Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10126232
    Abstract: A sample test method, microfluidic device, and test device efficiently and accurately compensates for interference of an interfering substance present in a sample using optical measurement without addition of a separate reagent for detecting the interfering substance. The sample test method includes: measuring an optical characteristic value of a target substance present in a sample; measuring an optical characteristic value of an interfering substance present in the sample; and determining a concentration of the target substance for which interference of the interfering substance is compensated for based on the optical characteristic value of the interfering substance.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: November 13, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung Ha Park, Sang Bum Park, Beom Seok Lee, Kui Hyun Kim, Joo Hee Park, Kyung Mi Song, Euy Hyun Cho, Ha Na Kim
  • Publication number: 20180180536
    Abstract: A sample test method, microfluidic device, and test device efficiently and accurately compensates for interference of an interfering substance present in a sample using optical measurement without addition of a separate reagent for detecting the interfering substance. The sample test method includes: measuring an optical characteristic value of a target substance present in a sample; measuring an optical characteristic value of an interfering substance present in the sample; and determining a concentration of the target substance for which interference of the interfering substance is compensated for based on the optical characteristic value of the interfering substance.
    Type: Application
    Filed: February 8, 2018
    Publication date: June 28, 2018
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung Ha PARK, Sang Bum PARK, Beom Seok LEE, Kui Hyun KIM, Joo Hee PARK, Kyung Mi SONG, Euy Hyun CHO, Ha Na KIM
  • Patent number: 9927351
    Abstract: A sample test method, microfluidic device, and test device efficiently and accurately compensates for interference of an interfering substance present in a sample using optical measurement without addition of a separate reagent for detecting the interfering substance. The sample test method includes: measuring an optical characteristic value of a target substance present in a sample; measuring an optical characteristic value of an interfering substance present in the sample; and determining a concentration of the target substance for which interference of the interfering substance is compensated for based on the optical characteristic value of the interfering substance.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: March 27, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung Ha Park, Sang Bum Park, Beom Seok Lee, Kui Hyun Kim, Joo Hee Park, Kyung Mi Song, Euy Hyun Cho, Ha Na Kim
  • Patent number: 9891174
    Abstract: Disclosed herein are a reactor, a test apparatus, and a test method, which measure, when a material included in a sample acts as an interfering material with respect to estimating a concentration of a target material, a concentration of the interfering material, and correct an estimated concentration of the target material based on the concentration of the interfering material, thereby improving the reliability and accuracy of the concentration of the target material. The reactor includes: a target material detecting chamber in which a first reagent that includes a first material that is activated by a target material is contained; a first material detecting chamber in which a second reagent that includes the target material is contained; an inlet hole into which a sample is injected; and a channel configured to connect the inlet hole, the target material detecting chamber, and the first material detecting chamber to each other.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: February 13, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kui Hyun Kim, Sang Bum Park, Joo Hee Park
  • Patent number: 9616424
    Abstract: Provided is a microfluidic apparatus including: a microfluidic structure for providing spaces for receiving a fluid and for forming channels, through which the fluid flows; and valves for controlling the flow of fluid through the channels in the microfluidic apparatus. The microfluidic structure includes: a sample chamber; a sample separation unit receiving the sample from the sample chamber and separating a supernatant from the sample by using a centrifugal force; a testing unit receiving the supernatant from the sample separation unit for detecting a specimen from the supernatant using an antigen-antibody reaction, and a quality control chamber for identifying reliability of the test.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: April 11, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Beom Seok Lee, Ji Won Kim, Jeong Gun Lee, Kui Hyun Kim
  • Publication number: 20160187363
    Abstract: Disclosed herein are a reactor, a test apparatus, and a test method, which measure, when a material included in a sample acts as an interfering material with respect to estimating a concentration of a target material, a concentration of the interfering material, and correct an estimated concentration of the target material based on the concentration of the interfering material, thereby improving the reliability and accuracy of the concentration of the target material. The reactor includes: a target material detecting chamber in which a first reagent that includes a first material that is activated by a target material is contained; a first material detecting chamber in which a second reagent that includes the target material is contained; an inlet hole into which a sample is injected; and a channel configured to connect the inlet hole, the target material detecting chamber, and the first material detecting chamber to each other.
    Type: Application
    Filed: December 31, 2015
    Publication date: June 30, 2016
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kui Hyun Kim, Sang Bum Park, Joo Hee Park
  • Publication number: 20160047740
    Abstract: A sample test method, microfluidic device, and test device efficiently and accurately compensates for interference of an interfering substance present in a sample using optical measurement without addition of a separate reagent for detecting the interfering substance. The sample test method includes: measuring an optical characteristic value of a target substance present in a sample; measuring an optical characteristic value of an interfering substance present in the sample; and determining a concentration of the target substance for which interference of the interfering substance is compensated for based on the optical characteristic value of the interfering substance.
    Type: Application
    Filed: August 12, 2015
    Publication date: February 18, 2016
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung Ha PARK, Sang Bum PARK, Beom Seok LEE, Kui Hyun KIM, Joo Hee PARK, Kyung Mi SONG, Euy Hyun CHO, Ha Na KIM
  • Publication number: 20150168361
    Abstract: An assay method enhances reliability of assay of a target material by removing interfering influence of non-target materials through controlling the concentration of the target material in a sample. A reagent kit, a microfluidic device, and a test apparatus are disclosed. The method includes capturing a target material using a capturing agent which selectively binds the target material and determining measured values of reaction products of an enzyme which is activated by the target material, wherein enzyme reactions are conducted in the presence and absence of the capturing agent.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 18, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Takashi SHIMAYAMA, Kui Hyun KIM, Ji Yun KANG, Soo Hong KIM, Sung Joon PARK
  • Publication number: 20150147769
    Abstract: A method of testing a sample to determine a concentration of a target material included in the sample and a microfluidic device in which a reaction of the sample and a reagent occurs are provided. The method includes mixing a sample with a reagent that changes optical characteristics in accordance with a concentration of chlorine ions in the sample, and a capturing material that captures some of the chlorine ions in the sample; measuring the optical characteristics after mixing the sample with the reagent and the capturing material; and determining a concentration of the chlorine ions in the sample based on the measured optical characteristics.
    Type: Application
    Filed: October 30, 2014
    Publication date: May 28, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kui Hyun KIM, Taguchi TAKAYUKI, Sung Joon PARK, Chang Soo PARK, Sang Hyun BAEK, Tae Han LEE
  • Patent number: 8652416
    Abstract: Disclosed are an article for assaying a target, wherein the article includes a solid surface on which a first binding member, a blocking material, and a second binding member are immobilized, a method of manufacturing the article, and a method of detecting a target using the article.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: February 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji Won Kim, Beom Seok Lee, In Wook Kim, Kui Hyun Kim
  • Patent number: 8470570
    Abstract: An apparatus for printing a biomolecular droplet onto a substrate using an electric charge concentration effect includes; an electric field forming electrode including an accommodating area in which the biomolecular droplet including micro magnetic beads is accommodated and a nozzle formed on an end of the accommodating area through which the biomolecular droplet is discharged, a substrate disposed below the electric field forming electrode, including a grounded target surface onto which the biomolecular droplet discharged from the nozzle of the electric field forming electrode is deposited, a magnet disposed below the substrate which applies a magnetic force on the micro magnetic beads, and an open circuit type voltage applying unit electrically connected to the electric field forming electrode which applies a charge to the electric field forming electrode which generates an electrical force which causes the biomolecular droplet to be ejected onto the target surface of the substrate.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: June 25, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kui-hyun Kim, Byung-chul Kim, Su-hyeon Kim
  • Patent number: 8431337
    Abstract: There are provided a method and apparatus for detecting nucleic acid using bead and nanopore, and more specifically, a method and apparatus capable of detecting nucleic acid fragments of 70 bps to 300 bps in length by a nanopore detection unit with nanopores of 20 to 120 nm in diameter by attaching a bead to a nucleic acid probe and then detecting the bead attached to nucleic acid not nucleic acid itself. Accordingly, the present invention can detect the nucleic acid fragments using the nanopore detection unit with nanopores of 20 to 120 nm in diameter, even in case where Polymerase Chain Reaction (PCR) products are given as the sample, particularly the PCR products are the nucleic acid fragments of 70 to 300 bps in length.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: April 30, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kui Hyun Kim, Jun Hong Min, Ah Gi Kim, In Ho Lee
  • Patent number: 8367398
    Abstract: Provided is a microfluidic apparatus including: a microfluidic structure for providing spaces for receiving a fluid and for forming channels, through which the fluid flows; and valves for controlling the flow of fluid through the channels in the microfluidic apparatus. The microfluidic structure includes: a sample chamber; a sample separation unit receiving the sample from the sample chamber and separating a supernatant from the sample by using a centrifugal force; a testing unit receiving the supernatant from the sample separation unit for detecting a specimen from the supernatant using an antigen-antibody reaction, and a quality control chamber for identifying reliability of the test.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: February 5, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Beom Seok Lee, Ji Won Kim, Jeong Gun Lee, Kui Hyun Kim
  • Patent number: 8367422
    Abstract: Provided is a biochemical analyzer including: a microfluidic device loading space including a microfluidic device supporting unit detachably supporting a microfluidic device including an electromagnetic radiation application region in which electromagnetic energy is applied; an energy source loading space including an energy source applying the electromagnetic energy to the electromagnetic radiation application region; and an isolation wall isolating the microfluidic device loading space and the energy source loading space to prevent heat transfer between the microfluidic device loading space and the energy source loading space and including a transparent window through which the electromagnetic energy can be transmitted. A method of controlling an internal temperature of the biochemical analyzer is also provided.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: February 5, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-gun Lee, Yong-moo Shin, Kui-hyun Kim, Jin-han Chung
  • Publication number: 20120178182
    Abstract: Provided are a micro-fluidic device having multiple reaction chambers to simultaneously detect a plurality of different analytes, and an analyte detection method using the same. The micro-fluidic device includes multiple reaction chambers containing a plurality of capture materials to be combined with different analytes, multiple channels connecting the multiple reaction chambers, and valves provided within the multiple channels to control fluid flowing through the channels.
    Type: Application
    Filed: January 6, 2012
    Publication date: July 12, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kui Hyun KIM, Beom Seok LEE
  • Publication number: 20110180251
    Abstract: Provided is a biochemical analyzer including: a microfluidic device loading space including a microfluidic device supporting unit detachably supporting a microfluidic device including an electromagnetic radiation application region in which electromagnetic energy is applied; an energy source loading space including an energy source applying the electromagnetic energy to the electromagnetic radiation application region; and an isolation wall isolating the microfluidic device loading space and the energy source loading space to prevent heat transfer between the microfluidic device loading space and the energy source loading space and including a transparent window through which the electromagnetic energy can be transmitted. A method of controlling an internal temperature of the biochemical analyzer is also provided.
    Type: Application
    Filed: April 6, 2011
    Publication date: July 28, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jeong-gun LEE, Yong-moo Shin, Kui-hyun Kim, Jin-han Chung
  • Patent number: 7981666
    Abstract: Provided are a sensing switch and a sensing method using the same. The sensing switch includes: a substrate; a supporter on the substrate; a sensing plate that is connected to a side of the supporter and is in parallel with the substrate by a predetermined distance; a receptor binding region on an upper surface of an end portion of the sensing plate; an electric or magnetic field generation device that induces deflection of the sensing plate when a receptor bound to the receptor binding region is selectively bound to an electrically or magnetically active ligand; and a pair of switching electrodes that are separated by a predetermined distance and is connected when the sensing plate contacts the substrate due to the deflection of the sensing plate. A target material need not be labelled, a signal processing of a fluorescent or electrical detection signal using an analysis apparatus is not required, and a signal can be directly decoded by confirming whether a current flows through the switch.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: July 19, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyu-tae Yoo, Joon-ho Kim, Jun-hong Min, Sung-ouk Jung, Ji-na Namgoong, Kui-hyun Kim, Jeo-young Shim, Kak Namkoong
  • Publication number: 20110124132
    Abstract: Disclosed are a centrifugal micro-fluidic device and an immunosorbent assay method using the same. In particular, a centrifugal micro-fluidic device having a plurality of micro-fluidic structures placed in a disc type platform to simultaneously conduct several immunosorbent assays, as well as an immunosorbent assay method using the same are provided.
    Type: Application
    Filed: September 30, 2010
    Publication date: May 26, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: In Wook KIM, Beom Seok LEE, Kui Hyun KIM, Ji Won KIM
  • Patent number: 7943088
    Abstract: Provided is a biochemical analyzer in which a microfluidic biochemical assay may be performed. The analyzer includes: a microfluidic device loading space including a microfluidic device supporting unit detachably supporting a microfluidic device including an energy application region in which an energy is applied; an energy source loading space including an energy source applying the energy to the radiation application region; and an isolation wall isolating the microfluidic device loading space and the energy source loading space to prevent heat transfer between the microfluidic device loading space and the energy source loading space and including a window through which the energy can be transmitted. A method of controlling an internal temperature of the biochemical analyzer is also provided.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: May 17, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-gun Lee, Yong-moo Shin, Kui-hyun Kim, Jin-han Chung
  • Patent number: 7943369
    Abstract: A DNA (Deoxyribo Nucleic Acid) detection device and a manufacturing method thereof detects DNA by an electrical method without a separate process for detection by using semiconductor microfabrication techniques. The DNA detection device includes a pair of chambers formed on a semiconductor substrate for accommodating a detection sample, a channel connecting the pair of chambers and a lid covering the pair of chambers. According to the present invention, it is possible to attain a DNA detection device, which can be mass-produced from a silicon substrate by using semiconductor manufacturing technology with improved microfabrication techniques, and a manufacturing method thereof.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: May 17, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: In Ho Lee, Jun Hong Min, Su Hyeon Kim, Chin Sung Park, Ah gi Kim, Kui Hyun Kim