Patents by Inventor Kumar Kandasamy

Kumar Kandasamy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230311210
    Abstract: Certain exemplary embodiments can provide a manufacturing method, process, machine, and/or system for continuously consolidating granular materials, creating new alloys and/or composites, and/or modifying and/or refining material microstructure, by using plastic deformation of feedstock(s) provided in various structural forms. Materials produced during this process can be fabricated directly and/or in forms such as, e.g., wires, rods, tubes, sheets, plate and/or channels, etc.
    Type: Application
    Filed: May 15, 2023
    Publication date: October 5, 2023
    Inventor: Kumar Kandasamy
  • Patent number: 11691201
    Abstract: Certain exemplary embodiments can provide a manufacturing method, process, machine, and/or system for continuously consolidating granular materials, creating new alloys and/or composites, and/or modifying and/or refining material microstructure, by using plastic deformation of feedstock(s) provided in various structural forms. Materials produced during this process can be fabricated directly and/or in forms such as, e.g., wires, rods, tubes, sheets, plate and/or channels, etc.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: July 4, 2023
    Inventor: Kumar Kandasamy
  • Publication number: 20220281005
    Abstract: Certain exemplary embodiments can provide a manufacturing method, process, machine, and/or system for continuously consolidating granular materials, creating new alloys and/or composites, and/or modifying and/or refining material microstructure, by using plastic deformation of feedstock(s) provided in various structural forms. Materials produced during this process can be fabricated directly and/or in forms such as, e.g., wires, rods, tubes, sheets, plate and/or channels, etc.
    Type: Application
    Filed: March 2, 2022
    Publication date: September 8, 2022
    Inventor: Kumar Kandasamy
  • Patent number: 10583631
    Abstract: A method for joining materials using additive friction stir techniques is provided. The method joins a material to a substrate, especially where the material to be joined and the substrate are dissimilar metals. One such method comprises (a) providing a substrate with one or more grooves; (b) rotating and translating an additive friction-stir tool relative to the substrate; (c) feeding a filler material through the additive friction-stir tool; and (d) depositing the filler material into the one or more grooves of the substrate. Translation and rotation of the tool causes heating and plastic deformation of the filler material, which flows into the grooves of the substrate resulting in an interlocking bond between the substrate and filler material. In embodiments, the depositing of the filler material causes deformation of the grooves in the substrate and an interlocking configuration between the grooves of the substrate and the filler material results.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: March 10, 2020
    Assignee: MELD Manufacturing Corporation
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Patent number: 10500674
    Abstract: An additive friction stir fabrication method and system is described which may be used to fabricate and join a rib to a metallic substrate or to repair a defect in a metallic substrate through extrusion. The method may be carried out with or without the addition of preformed ribs. One such method involves feeding a friction-stir tool with a consumable filler material such that interaction of the friction-stir tool with the substrate generates plastic deformation at an interface between the friction-stir tool and a metallic substrate to bond the plasticized filler and substrate together and extrude this material through a forming cavity to form a rib joined to the metallic substrate. Further described is a system for fabricating a rib joined to a metallic substrate through extrusion.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: December 10, 2019
    Assignee: MELD Manufacturing Corporation
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Publication number: 20180361501
    Abstract: Solid-state joining of preformed features, such as bosses, flanges, gaskets, centralizers and other features to substrates or cast parts by a solid-state MELD additive manufacturing process is disclosed. Joining can be between same or different materials using same, similar or dissimilar filler material than the materials of the feature and the part that need to be joined.
    Type: Application
    Filed: August 28, 2018
    Publication date: December 20, 2018
    Inventors: Nanci Hardwick, Chase Cox, Jeffrey Patrick Schultz, Kumar Kandasamy
  • Patent number: 10105790
    Abstract: Additive friction stir methods for joining materials are provided. The methods comprise providing first and second substrates to be joined; providing a forming plate comprising one or more forming cavities; placing the first and second substrates in communication with the forming plate; placing the first and second substrates in communication with each other; rotating and translating an additive friction-stir tool relative to the substrates; feeding a filler material through the additive friction-stir tool; deforming the filler material and the first and second substrates; and extruding one or more of the filler material and the first and second substrates into one or more of the forming cavities of the forming plate. Interaction of the additive friction-stir tool with the substrates generates heat and plastic deformation at the joint to weld the substrates at the joint. The methods include introduction of reinforcing material at the joint through addition of the filler material.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: October 23, 2018
    Assignee: Aeroprobe Corporation
    Inventor: Kumar Kandasamy
  • Publication number: 20180085849
    Abstract: An additive friction stir fabrication method and system is described which may be used to fabricate and join a rib to a metallic substrate or to repair a defect in a metallic substrate through extrusion. The method may be carried out with or without the addition of preformed ribs. One such method involves feeding a friction-stir tool with a consumable filler material such that interaction of the friction-stir tool with the substrate generates plastic deformation at an interface between the friction-stir tool and a metallic substrate to bond the plasticized filler and substrate together and extrude this material through a forming cavity to form a rib joined to the metallic substrate. Further described is a system for fabricating a rib joined to a metallic substrate through extrusion.
    Type: Application
    Filed: December 1, 2017
    Publication date: March 29, 2018
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Patent number: 9862054
    Abstract: Additive friction stir methods for repairing substrates, coating substrates, fabricating/adding/attaching ribs, joining substrates, stiffening and enhancing structures, surface modification, enhancing surface properties, welding, coating, and extrusion are described. An additive friction stir fabrication method and system is described which may be used to fabricate and join a rib to a substrate or to repair a defect in a substrate through extrusion. The method may be carried out with or without the addition of preformed ribs. One such method involves feeding a friction-stir tool with a consumable filler material such that interaction of the friction-stir tool with the substrate generates plastic deformation at an interface between the friction-stir tool and a substrate to bond the plasticized filler and substrate together and extrude this material through a forming cavity to form a rib joined to the substrate. Further described is a system for fabricating a rib joined to a substrate through extrusion.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: January 9, 2018
    Assignee: Aeroprobe Corporation
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Publication number: 20170057204
    Abstract: A method for joining materials using additive friction stir techniques is provided. The method joins a material to a substrate, especially where the material to be joined and the substrate are dissimilar metals. One such method comprises (a) providing a substrate with one or more grooves; (b) rotating and translating an additive friction-stir tool relative to the substrate; (c) feeding a filler material through the additive friction-stir tool; and (d) depositing the filler material into the one or more grooves of the substrate. Translation and rotation of the tool causes heating and plastic deformation of the filler material, which flows into the grooves of the substrate resulting in an interlocking bond between the substrate and filler material. In embodiments, the depositing of the filler material causes deformation of the grooves in the substrate and an interlocking configuration between the grooves of the substrate and the filler material results.
    Type: Application
    Filed: November 10, 2016
    Publication date: March 2, 2017
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Publication number: 20170043429
    Abstract: Additive friction stir methods for joining materials are provided. The methods comprise providing first and second substrates to be joined; providing a forming plate comprising one or more forming cavities; placing the first and second substrates in communication with the forming plate; placing the first and second substrates in communication with each other; rotating and translating an additive friction-stir tool relative to the substrates; feeding a filler material through the additive friction-stir tool; deforming the filler material and the first and second substrates; and extruding one or more of the filler material and the first and second substrates into one or more of the forming cavities of the forming plate. Interaction of the additive friction-stir tool with the substrates generates heat and plastic deformation at the joint to weld the substrates at the joint. The methods include introduction of reinforcing material at the joint through addition of the filler material.
    Type: Application
    Filed: October 26, 2016
    Publication date: February 16, 2017
    Inventor: Kumar Kandasamy
  • Patent number: 9511446
    Abstract: A method for joining materials using additive friction stir techniques is provided. The method joins a material to a substrate, especially where the material to be joined and the substrate are dissimilar metals. One such method comprises (a) providing a substrate with one or more grooves; (b) rotating and translating an additive friction-stir tool relative to the substrate; (c) feeding a filler material through the additive friction-stir tool; and (d) depositing the filler material into the one or more grooves of the substrate. Translation and rotation of the tool causes heating and plastic deformation of the filler material, which flows into the grooves of the substrate resulting in an interlocking bond between the substrate and filler material. In embodiments, the depositing of the filler material causes deformation of the grooves in the substrate and an interlocking configuration between the grooves of the substrate and the filler material results.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: December 6, 2016
    Assignee: Aeroprobe Corporation
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Patent number: 9511445
    Abstract: Additive friction stir methods for joining materials are provided. The methods comprise providing first and second substrates to be joined; providing a forming plate comprising one or more forming cavities; placing the first and second substrates in communication with the forming plate; placing the first and second substrates in communication with each other; rotating and translating an additive friction-stir tool relative to the substrates; feeding a filler material through the additive friction-stir tool; deforming the filler material and the first and second substrates; and extruding one or more of the filler material and the first and second substrates into one or more of the forming cavities of the forming plate. Interaction of the friction-stir tool with the substrates generates plastic deformation at the joint to weld the substrates at the joint. The methods include introduction of reinforcing material at the joint through addition of the filler material.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: December 6, 2016
    Assignee: Aeroprobe Corporation
    Inventor: Kumar Kandasamy
  • Publication number: 20160175981
    Abstract: Additive friction stir methods for joining materials are provided. The methods comprise providing first and second substrates to be joined; providing a forming plate comprising one or more forming cavities; placing the first and second substrates in communication with the forming plate; placing the first and second substrates in communication with each other; rotating and translating an additive friction-stir tool relative to the substrates; feeding a filler material through the additive friction-stir tool; deforming the filler material and the first and second substrates; and extruding one or more of the filler material and the first and second substrates into one or more of the forming cavities of the forming plate. Interaction of the friction-stir tool with the substrates generates plastic deformation at the joint to weld the substrates at the joint. The methods include introduction of reinforcing material at the joint through addition of the filler material.
    Type: Application
    Filed: March 6, 2015
    Publication date: June 23, 2016
    Inventor: Kumar Kandasamy
  • Publication number: 20160175982
    Abstract: A method for joining materials using additive friction stir techniques is provided. The method joins a material to a substrate, especially where the material to be joined and the substrate are dissimilar metals. One such method comprises (a) providing a substrate with one or more grooves; (b) rotating and translating an additive friction-stir tool relative to the substrate; (c) feeding a filler material through the additive friction-stir tool; and (d) depositing the filler material into the one or more grooves of the substrate. Translation and rotation of the tool causes heating and plastic deformation of the filler material, which flows into the grooves of the substrate resulting in an interlocking bond between the substrate and filler material. In embodiments, the depositing of the filler material causes deformation of the grooves in the substrate and an interlocking configuration between the grooves of the substrate and the filler material results.
    Type: Application
    Filed: March 10, 2015
    Publication date: June 23, 2016
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Publication number: 20160074958
    Abstract: An additive friction stir fabrication method and system is described which may be used to fabricate and join a rib to a metallic substrate or to repair a defect in a metallic substrate through extrusion. The method may be carried out with or without the addition of preformed ribs. One such method involves feeding a friction-stir tool with a consumable filler material such that interaction of the friction-stir tool with the substrate generates plastic deformation at an interface between the friction-stir tool and a metallic substrate to bond the plasticized filler and substrate together and extrude this material through a forming cavity to form a rib joined to the metallic substrate. Further described is a system for fabricating a rib joined to a metallic substrate through extrusion.
    Type: Application
    Filed: November 30, 2015
    Publication date: March 17, 2016
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Patent number: 9266191
    Abstract: An additive friction stir fabrication method and system is described which may be used to fabricate and join a rib to a metallic substrate or to repair a defect in a metallic substrate through extrusion. The method may be carried out with or without the addition of preformed ribs. One such method involves feeding a friction-stir tool with a consumable filler material such that interaction of the friction-stir tool with the substrate generates plastic deformation at an interface between the friction-stir tool and a metallic substrate to bond the plasticized filler and substrate together and extrude this material through a forming cavity to form a rib joined to the metallic substrate. Further described is a system for fabricating a rib joined to a metallic substrate through extrusion.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: February 23, 2016
    Assignee: Aeroprobe Corporation
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Publication number: 20150165546
    Abstract: An additive friction stir fabrication method and system is described which may be used to fabricate and join a rib to a metallic substrate or to repair a defect in a metallic substrate through extrusion. The method may be carried out with or without the addition of preformed ribs. One such method involves feeding a friction-stir tool with a consumable filler material such that interaction of the friction-stir tool with the substrate generates plastic deformation at an interface between the friction-stir tool and a metallic substrate to bond the plasticized filler and substrate together and extrude this material through a forming cavity to form a rib joined to the metallic substrate. Further described is a system for fabricating a rib joined to a metallic substrate through extrusion.
    Type: Application
    Filed: December 17, 2014
    Publication date: June 18, 2015
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz