Patents by Inventor Kumi Masunaga

Kumi Masunaga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230330618
    Abstract: According to one embodiment, a flow channel structure may include a first flow channel, and a second flow channel that joins the first flow channel. An end of the second flow channel close to the first flow channel has a first region having a depth shallower than a depth of the first flow channel.
    Type: Application
    Filed: March 13, 2023
    Publication date: October 19, 2023
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kumi MASUNAGA, Masato AKITA, Mitsuaki KATO, Mitsuko ISHIHARA
  • Patent number: 9437779
    Abstract: According to one embodiment, a semiconductor light emitting device includes a structure, a first electrode layer, and a second electrode layer. The structure includes a first semiconductor layer, a second semiconductor layer and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The first electrode layer is provided on the first semiconductor layer side of the structure. The first electrode layer is made of metal and contains a portion contacting the first semiconductor layer. The second electrode layer is provided on the second semiconductor layer side of the structure. The second electrode layer has a metal portion with a thickness of not less than 10 nanometers and not more than 50 nanometers, and a plurality of openings piercing the metal portion, each of the openings having an equivalent circle diameter of not less than 10 nanometers and not more than 5 micrometers.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: September 6, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Koji Asakawa, Akira Fujimoto, Ryota Kitagawa, Kumi Masunaga, Takanobu Kamakura, Shinji Nunotani
  • Patent number: 9331248
    Abstract: According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The device also includes a first electrode layer having electrical continuity with the first semiconductor layer and a second electrode layer provided on the second semiconductor layer, the second electrode layer including a metal portion having a thickness not less than 10 nanometers and not more than 100 nanometers along a direction from the first semiconductor layer to the second semiconductor layer.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: May 3, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kumi Masunaga, Ryota Kitagawa, Akira Fujimoto, Koji Asakawa, Takanobu Kamakura, Shinji Nunotani
  • Patent number: 9318661
    Abstract: A semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a first electrode layer, a light emitting layer, a second semiconductor layer, a third semiconductor layer and a second electrode layer. The first electrode layer includes a metal portion having a plurality of opening portions. The opening portions penetrate the metal portion and have an equivalent circle diameter of a shape of the opening portions. The light emitting layer is between the first semiconductor layer and the first electrode layer. The second semiconductor layer of a second conductivity type is between the light emitting layer and the first electrode layer. The third semiconductor layer of a second conductivity type is between the second semiconductor layer and the first electrode layer. The second electrode layer is connected to the first semiconductor layer.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: April 19, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kumi Masunaga, Ryota Kitagawa, Eishi Tsutsumi, Akira Fujimoto, Koji Asakawa, Takanobu Kamakura, Shinji Nunotani
  • Patent number: 9231132
    Abstract: A solar cell having on a light incident surface side an electrode with both low resistivity and high transparency to promote efficient excitation of carriers using inexpensive materials. The solar cell includes a photoelectric conversion layer, a first electrode layer arranged on the light incident surface side, and a second electrode layer arranged opposed to the first electrode layer. The first electrode layer has a thickness in the range of 10 to 200 nm, and plural penetrating openings, each of which occupies an area in the range of 80 nm2 to 0.8 ?m2, and has an aperture ratio in the range 10 to 66%. The first electrode layer can be produced by etching using an etching mask in the form of a single particle layer of fine particles, or of a dot pattern formed by self-assembly of a block copolymer, or of a stamper.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: January 5, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kumi Masunaga, Akira Fujimoto, Tsutomu Nakanishi, Eishi Tsutsumi, Ryota Kitagawa, Koji Asakawa, Hideyuki Nishizawa
  • Publication number: 20150311393
    Abstract: According to one embodiment, a semiconductor light emitting device includes a structure, a first electrode layer, and a second electrode layer. The structure includes a first semiconductor layer, a second semiconductor layer and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The first electrode layer is provided on the first semiconductor layer side of the structure. The first electrode layer is made of metal and contains a portion contacting the first semiconductor layer. The second electrode layer is provided on the second semiconductor layer side of the structure. The second electrode layer has a metal portion with a thickness of not less than 10 nanometers and not more than 50 nanometers, and a plurality of openings piercing the metal portion, each of the openings having an equivalent circle diameter of not less than 10 nanometers and not more than 5 micrometers.
    Type: Application
    Filed: June 17, 2015
    Publication date: October 29, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Koji ASAKAWA, Akira FUJIMOTO, Ryota KITAGAWA, Kumi MASUNAGA, Takanobu KAMAKURA, Shinji NUNOTANI
  • Patent number: 9159880
    Abstract: According to one embodiment, a semiconductor light emitting device includes a structure, a first electrode layer, and a second electrode layer. The structure includes a first semiconductor layer, a second semiconductor layer and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The first electrode layer is provided on the first semiconductor layer side of the structure. The first electrode layer is made of metal and contains a portion contacting the first semiconductor layer. The second electrode layer is provided on the second semiconductor layer side of the structure. The second electrode layer has a metal portion with a thickness of not less than 10 nanometers and not more than 50 nanometers, and a plurality of openings piercing the metal portion, each of the openings having an equivalent circle diameter of not less than 10 nanometers and not more than 5 micrometers.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: October 13, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koji Asakawa, Akira Fujimoto, Ryota Kitagawa, Kumi Masunaga, Takanobu Kamakura, Shinji Nunotani
  • Patent number: 9142728
    Abstract: According to one embodiment, a semiconductor light emitting device includes a structure including a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The device also includes an electrode layer provided on the second semiconductor layer side of the structure. The electrode layer includes a metal portion with a thickness of not less than 10 nanometers and not more than 100 nanometers. A plurality of openings pierces the metal portion, each of the openings having an equivalent circle diameter of not less than 10 nanometers and not more than 5 micrometers. The device includes an inorganic film providing on the metal portion and inner surfaces of the openings, the inorganic film having transmittivity with respect to light emitted from the light emitting layer.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: September 22, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Fujimoto, Ryota Kitagawa, Kumi Masunaga, Kenji Nakamura, Tsutomu Nakanishi, Koji Asakawa, Takanobu Kamakura, Shinji Nunotani
  • Patent number: 9136405
    Abstract: The present invention provides a light transmission type solar cell excellent in both power generation efficiency and light transparency, and also provides a method for producing that solar cell. The solar cell of the present invention comprises a photoelectric conversion layer, a light-incident side electrode layer, and a counter electrode layer. The incident side electrode layer is provided with plural openings bored through the layer, and has a thickness of 10 nm to 200 nm. Each of the openings occupies an area of 80 nm2 to 0.8 ?m2, and the opening ratio is in the range of 10% to 66%. The transmittance of the whole cell is 5% or more at 700 nm wavelength. The incident side electrode layer can be formed by etching fabrication with a stamper. In the etching fabrication, a mono-particle layer of fine particles or a dot pattern formed by self-assembled block copolymer can be used as a mask.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: September 15, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Eishi Tsutsumi, Kumi Masunaga, Ryota Kitagawa, Tsutomu Nakanishi, Akira Fujimoto, Hideyuki Nishizawa, Koji Asakawa
  • Patent number: 8993869
    Abstract: A photoelectric conversion element includes a photoelectric conversion layer to include a first metal layer, a semiconductor layer, and a second metal layer, all of which are laminated. In addition, at least one of the first metal layer and the second metal layer is a nano-mesh metal having a plurality of through holes or a dot metal having a plurality of metal dots arranged separately from each other on the semiconductor layer. The photoelectric conversion layer includes a long-wavelength absorption layer containing an impurity which is different from impurities for p-type doping and n-type doping of the semiconductor layer. The long-wavelength absorption layer is within a depth of 5 nm from the nano-mesh metal or the dot metal.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: March 31, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Fujimoto, Tsutomu Nakanishi, Kenji Nakamura, Kumi Masunaga, Koji Asakawa
  • Publication number: 20150072456
    Abstract: According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The device also includes a first electrode layer having electrical continuity with the first semiconductor layer and a second electrode layer provided on the second semiconductor layer, the second electrode layer including a metal portion having a thickness not less than 10 nanometers and not more than 100 nanometers along a direction from the first semiconductor layer to the second semiconductor layer.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 12, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kumi MASUNAGA, Ryota Kitagawa, Akira Fujimoto, Koji Asakawa, Takanobu Kamakura, Shinji Nunotani
  • Patent number: 8921887
    Abstract: According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The device also includes a first electrode layer having electrical continuity with the first semiconductor layer and a second electrode layer provided on the second semiconductor layer, the second electrode layer including a metal portion having a thickness not less than 10 nanometers and not more than 100 nanometers along a direction from the first semiconductor layer to the second semiconductor layer.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: December 30, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kumi Masunaga, Ryota Kitagawa, Akira Fujimoto, Koji Asakawa, Takanobu Kamakura, Shinji Nunotani
  • Publication number: 20140349421
    Abstract: According to one embodiment, a semiconductor light emitting device includes a structure including a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The device also includes an electrode layer provided on the second semiconductor layer side of the structure. The electrode layer includes a metal portion with a thickness of not less than 10 nanometers and not more than 100 nanometers. A plurality of openings pierces the metal portion, each of the openings having an equivalent circle diameter of not less than 10 nanometers and not more than 5 micrometers. The device includes an inorganic film providing on the metal portion and inner surfaces of the openings, the inorganic film having transmittivity with respect to light emitted from the light emitting layer.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 27, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akira FUJIMOTO, Ryota KITAGAWA, Kumi MASUNAGA, Kenji NAKAMURA, Tsutomu NAKANISHI, Koji ASAKAWA, Takanobu KAMAKURA, Shinji NUNOTANI
  • Patent number: 8835954
    Abstract: According to one embodiment, a semiconductor light emitting device includes a structure including a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The device also includes an electrode layer provided on the second semiconductor layer side of the structure. The electrode layer includes a metal portion with a thickness of not less than 10 nanometers and not more than 100 nanometers. A plurality of openings pierces the metal portion, each of the openings having an equivalent circle diameter of not less than 10 nanometers and not more than 5 micrometers. The device includes an inorganic film providing on the metal portion and inner surfaces of the openings, the inorganic film having transmittivity with respect to light emitted from the light emitting layer.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: September 16, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Fujimoto, Ryota Kitagawa, Kumi Masunaga, Kenji Nakamura, Tsutomu Nakanishi, Koji Asakawa, Takanobu Kamakura, Shinji Nunotani
  • Publication number: 20140182677
    Abstract: A photoelectric conversion element according to an embodiments includes: a first metal layer; a semiconductor layer formed on the first metal layer; a second metal layer formed on the semiconductor layer, the second metal layer comprising a porous thin film with a plurality of openings each having a mean area not smaller than 80 nm2 and not larger than 0.8 ?m2 or miniature structures having a mean volume not smaller than 4 nm3 and not larger than 0.52 ?m3; and a wavelength converting layer formed between the semiconductor layer and the second metal layer, at least a refractive index of a portion of the wavelength converting layer being lower than a refractive index of a material of the semiconductor layer, the portion being at a distance of 5 nm or shorter from an end portion of the second metal layer.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 3, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Akira FUJIMOTO, Eishi Tsutsumi, Tsutomu Nakanishi, Kumi Masunaga, Kenji Nakamura, Koji Asakawa
  • Patent number: 8692283
    Abstract: According to one embodiment, a light-transmitting metal electrode includes a metal layer. The metal layer is provided on a major surface of a member and includes a metal nanowire and a plurality of openings formed with the metal nanowire. The thin layer includes a plurality of first straight line parts along a first direction and a plurality of second straight line parts along a direction different from the first direction. A maximum length of the first line parts along the first direction and a maximum length of the second line parts along the direction different from the first direction are not more than a wave length of visible light. A ratio of an area of the metal layer viewed in a normal direction of the surface to an area of the metal layer viewed in the normal direction is more than 20% and not more than 80%.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: April 8, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsutomu Nakanishi, Akira Fujimoto, Ryota Kitagawa, Kumi Masunaga, Kenji Nakamura, Koji Asakawa, Shinji Nunotani, Takanobu Kamakura
  • Publication number: 20140024165
    Abstract: A solar cell having on a light incident surface side an electrode with both low resistivity and high transparency to promote efficient excitation of carriers using inexpensive materials. The solar cell includes a photoelectric conversion layer, a first electrode layer arranged on the light incident surface side, and a second electrode layer arranged opposed to the first electrode layer. The first electrode layer has a thickness in the range of 10 to 200 nm, and plural penetrating openings, each of which occupies an area in the range of 80 nm2 to 0.8 ?m2, and has an aperture ratio in the range 10 to 66%. The first electrode layer can be produced by etching using an etching mask in the form of a single particle layer of fine particles, or of a dot pattern formed by self-assembly of a block copolymer, or of a stamper.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 23, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kumi MASUNAGA, Akira Fujimoto, Tsutomu Nakanishi, Eishi Tsutsumi, Ryota Kitagawa, Koji Asakawa, Hideyuki Nishizawa
  • Publication number: 20130092219
    Abstract: The present invention provides a solar cell comprising a laminate of a photoelectric conversion layer, a metal porous membrane and a refractive index adjusting layer. The metal porous membrane is positioned on the light-incident side, is directly in contact with the photoelectric conversion layer, and has plural openings bored though the membrane. The refractive index adjusting layer covers at least a part of the surface of the metal porous membrane and of the inner surfaces of the openings, and has a refractive index of 1.35 to 4.2 inclusive. If adopting a nano-fabricated metal membrane as an electrode, the present invention enables to provide a solar cell capable of realizing efficient photoelectric conversion by use of electric field-enhancement effect.
    Type: Application
    Filed: September 14, 2012
    Publication date: April 18, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Eishi TSUTSUMI, Kumi Masunaga, Ryota Kitagawa, Tsutomu Nakanishi, Akira Fujimoto, Koji Asakawa
  • Publication number: 20130081683
    Abstract: The present invention provides a photoelectric conversion element having high efficiency in propagating carrier excitation by use of enhanced electric fields. The photoelectric conversion element comprises a photoelectric conversion layer including two or more laminated semiconductor layers placed between two electrode layers, and is characterized by having an electric field enhancing layer placed between the semiconductor layers in the photoelectric conversion layer. The electric field enhancing layer is provided with a metal-made minute structure, and the minute structure is, for example, a porous membrane or a group of nano-objects such as very small spheres.
    Type: Application
    Filed: September 27, 2012
    Publication date: April 4, 2013
    Inventors: Kumi MASUNAGA, Akira FUJIMOTO, Eishi TSUTSUMI, Koji ASAKAWA, Tsutomu NAKANISHI, Hideyuki NISHIZAWA, Ryota KITAGAWA
  • Publication number: 20130075778
    Abstract: According to one embodiment, a light-transmitting metal electrode includes a metal layer. The metal layer is provided on a major surface of a member and includes a metal nanowire and a plurality of openings formed with the metal nanowire. The thin layer includes a plurality of first straight line parts along a first direction and a plurality of second straight line parts along a direction different from the first direction. A maximum length of the first line parts along the first direction and a maximum length of the second line parts along the direction different from the first direction are not more than a wave length of visible light. A ratio of an area of the metal layer viewed in a normal direction of the surface to an area of the metal layer viewed in the normal direction is more than 20% and not more than 80%.
    Type: Application
    Filed: February 28, 2012
    Publication date: March 28, 2013
    Inventors: Tsutomu NAKANISHI, Akira FUJIMOTO, Ryota KITAGAWA, Kumi MASUNAGA, Kenji NAKAMURA, Koji ASAKAWA, Shinji NUNOTANI, Takanobu KAMAKURA