Patents by Inventor Kumiko Hoshi

Kumiko Hoshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220326234
    Abstract: A detection method uses a reaction vessel including a container including a housing part having a first opening opened at an upper portion and a second opening opened at a side portion, and a side wall member fixed to the container so that a capturing region on a metal film is exposed in the second opening. First, a liquid containing a specimen is provided to the housing part. Next, the liquid in the housing part is stirred to capture, into the capturing region, a substance to be detected in the liquid. Next, the metal film is irradiated with light so that surface plasmon resonance occurs in the metal film, and light emitted from the reaction vessel and having a light amount changing depending on the amount of the substance to be detected captured in the capturing region is detected.
    Type: Application
    Filed: August 28, 2020
    Publication date: October 13, 2022
    Applicant: OTSUKA PHARMACEUTICAL CO., LTD.
    Inventors: Eiichi OKAWA, Hideyuki FUJII, Kumiko HOSHI
  • Patent number: 10866169
    Abstract: An object of the present invention is to provide a method of detecting rare cells in which, upon spreading a cell suspension in a flow path formed on a microchamber chip, the loss of rare cells is reduced by improving the cell recovery rate. The present invention provides a method of detecting rare cells from a cell suspension by using a cell-spreading device 10 comprising a microchamber chip 1, a flow path-forming frame 2, an inlet port 3, and an outlet port 4; and a method of recovering rare cells comprising: the step (X) of introducing a cell suspension to a flow path 5 via the inlet port 3 so as to spread cells in the flow path 5 on the microchamber chip 1; and the step (Y) of storing the cells spread in the flow path 5 on the microchamber chip 1 in microchamber 6s by intermittent liquid feeding.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: December 15, 2020
    Assignee: KONICA MINOLTA, INC.
    Inventors: Jungo Araki, Kumiko Hoshi
  • Patent number: 10584367
    Abstract: A cell-spreading device may include a microchamber chip having a microchamber capable of enclosing and retaining a cell, a channel-forming frame united with the microchamber chip to form a channel on the microchamber, an inlet provided in the channel-forming frame to allow a cell suspension to flow into the channel, and an outlet provided in the channel-forming frame to allow the cell suspension, which has been allowed to flow into the channel through the inlet, to flow out from the channel. When an aperture of the microchamber is projected perpendicularly to a longitudinal width of the microchamber chip, the void ratio that is a ratio of the sum total of voids to the longitudinal width is not more than 5%, the void being a length of a portion where the projected aperture of the microchamber is not present against the longitudinal width.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: March 10, 2020
    Assignee: KONICA MINOLTA, INC.
    Inventors: Jungo Araki, Kumiko Hoshi, Shohei Yamamura, Shouki Yatsushiro, Masatoshi Kataoka
  • Publication number: 20150337355
    Abstract: A cell-spreading device may include a microchamber chip having a microchamber capable of enclosing and retaining a cell, a channel-forming frame united with the microchamber chip to form a channel on the microchamber, an inlet provided in the channel-forming frame to allow a cell suspension to flow into the channel, and an outlet provided in the channel-forming frame to allow the cell suspension, which has been allowed to flow into the channel through the inlet, to flow out from the channel. When an aperture of the microchamber is projected perpendicularly to a longitudinal width of the microchamber chip, the void ratio that is a ratio of the sum total of voids to the longitudinal width is not more than 5%, the void being a length of a portion where the projected aperture of the microchamber is not present against the longitudinal width.
    Type: Application
    Filed: July 1, 2013
    Publication date: November 26, 2015
    Inventors: Jungo ARAKI, Kumiko HOSHI, Shohei YAMAMURA, Shouki YATSUSHIRO, Masatoshi KATAOKA
  • Publication number: 20150276564
    Abstract: An object of the present invention is to provide a method of detecting rare cells in which, upon spreading a cell suspension in a flow path formed on a microchamber chip, the loss of rare cells is reduced by improving the cell recovery rate. The present invention provides a method of detecting rare cells from a cell suspension by using a cell-spreading device 10 comprising a microchamber chip 1, a flow path-forming frame 2, an inlet port 3, and an outlet port 4; and a method of recovering rare cells comprising: the step (X) of introducing a cell suspension to a flow path 5 via the inlet port 3 so as to spread cells in the flow path 5 on the microchamber chip 1; and the step (Y) of storing the cells spread in the flow path 5 on the microchamber chip 1 in microchamber 6s by intermittent liquid feeding.
    Type: Application
    Filed: October 15, 2013
    Publication date: October 1, 2015
    Inventors: Jungo Araki, Kumiko Hoshi
  • Publication number: 20150203804
    Abstract: Provided is a micro chamber chip for cell expansion, with which the non-specific adsorption of cells onto a surface other than a micro chamber can be suppressed, and a rare cell from a substance that contains a large quantity of cells, such as a blood, can be stored, held and observed without a leakage of the rare cell. A micro chamber chip for cell expansion is provided with a micro chamber chip in which a micro chamber configured to store and hold one or more cells is formed on an upper surface of a substrate, wherein an upper surface of the micro chamber chip and an inner wall surface of the micro chamber are coated with a blocking agent that can suppress a non-specific adsorption of a cell on the upper surface.
    Type: Application
    Filed: July 1, 2013
    Publication date: July 23, 2015
    Inventors: Kumiko Hoshi, Jungo Araki, Shohei Yamamura, Shouki Yatsushiro, Masatoshi Kataoka