Patents by Inventor Kumiko Shimizu

Kumiko Shimizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11798780
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: October 24, 2023
    Assignee: Hitachi High-Tech Corporation
    Inventors: Toshiyuki Yokosuka, Chahn Lee, Hideyuki Kazumi, Hajime Kawano, Shahedul Hoque, Kumiko Shimizu, Hiroyuki Takahashi
  • Publication number: 20220122804
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Application
    Filed: December 28, 2021
    Publication date: April 21, 2022
    Inventors: Toshiyuki YOKOSUKA, Chahn LEE, Hideyuki KAZUMI, Hajime KAWANO, Shahedul HOQUE, Kumiko SHIMIZU, Hiroyuki TAKAHASHI
  • Patent number: 11239052
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: February 1, 2022
    Assignee: Hitachi High-Tech Corporation
    Inventors: Toshiyuki Yokosuka, Chahn Lee, Hideyuki Kazumi, Hajime Kawano, Shahedul Hoque, Kumiko Shimizu, Hiroyuki Takahashi
  • Patent number: 10984980
    Abstract: The objective of the present invention is to provide a charged particle beam device for setting, from an image of a trench-like groove or a pit, device conditions for finding a hole or the like provided in the trench or the pit, or measuring a hole or the like provided inside the trench or the like with high accuracy. In the present invention, a charged particle beam device comprises: a deflector for causing a charged particle beam emitted from a charged particle source to perform a scan; a detector for detecting a charged particle obtained on the basis of the scanning of the charged particle beam; and a computation processing device for generating an image on the basis of the output of the detector.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: April 20, 2021
    Assignee: Hitachi High-Tech Corporation
    Inventors: Kei Sakai, Satoru Yamaguchi, Hideki Itai, Yasunori Takasugi, Kumiko Shimizu
  • Patent number: 10984981
    Abstract: A charged particle beam device is provided which minimizes the beam irradiation amount while maintaining a high measurement success rate. The charged particle beam device includes a control device for controlling a scan deflector on the basis of selection of a predetermined number n of frames, wherein the control device controls the scan deflector so that a charged particle beam is selectively scanned on a portion on a sample corresponding to a pixel satisfying a predetermined condition or a region including the portion on the sample from an image obtained by scanning the charged particle beam for a number m of frames (m?1), the number m of frames being smaller than the number n of frames.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: April 20, 2021
    Assignee: Hitachi High-Tech Corporation
    Inventors: Hideki Itai, Kumiko Shimizu, Wataru Mori, Hajime Kawano, Shahedul Hoque
  • Publication number: 20200312615
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Application
    Filed: June 12, 2020
    Publication date: October 1, 2020
    Inventors: Toshiyuki YOKOSUKA, Chahn LEE, Hideyuki KAZUMI, Hajime KAWANO, Shahedul HOQUE, Kumiko SHIMIZU, Hiroyuki TAKAHASHI
  • Patent number: 10720306
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: July 21, 2020
    Assignee: Hitachi High-Tech Corporation
    Inventors: Toshiyuki Yokosuka, Chahn Lee, Hideyuki Kazumi, Hajime Kawano, Shahedul Hoque, Kumiko Shimizu, Hiroyuki Takahashi
  • Publication number: 20190180979
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Application
    Filed: February 14, 2019
    Publication date: June 13, 2019
    Inventors: Toshiyuki YOKOSUKA, Chahn LEE, Hideyuki KAZUMI, Hajime KAWANO, Shahedul HOQUE, Kumiko SHIMIZU, Hiroyuki TAKAHASHI
  • Patent number: 10249474
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: April 2, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshiyuki Yokosuka, Chahn Lee, Hideyuki Kazumi, Hajime Kawano, Shahedul Hoque, Kumiko Shimizu, Hiroyuki Takahashi
  • Publication number: 20190035600
    Abstract: The objective of the present invention is to provide a charged particle beam device for setting, from an image of a trench-like groove or a pit, device conditions for finding a hole or the like provided in the trench or the pit, or measuring a hole or the like provided inside the trench or the like with high accuracy. In the present invention, a charged particle beam device comprises: a deflector for causing a charged particle beam emitted from a charged particle source to perform a scan; a detector for detecting a charged particle obtained on the basis of the scanning of the charged particle beam; and a computation processing device for generating an image on the basis of the output of the detector.
    Type: Application
    Filed: January 29, 2016
    Publication date: January 31, 2019
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Kei SAKAI, Satoru YAMAGUCHI, Hideki ITAI, Yasunori TAKASUGI, Kumiko SHIMIZU
  • Publication number: 20180374674
    Abstract: A charged particle beam device is provided which minimizes the beam irradiation amount while maintaining a high measurement success rate. The charged particle beam device includes a control device for controlling a scan deflector on the basis of selection of a predetermined number n of frames, wherein the control device controls the scan deflector so that a charged particle beam is selectively scanned on a portion on a sample corresponding to a pixel satisfying a predetermined condition or a region including the portion on the sample from an image obtained by scanning the charged particle beam for a number m of frames (m?1), the number m of frames being smaller than the number n of frames.
    Type: Application
    Filed: August 31, 2018
    Publication date: December 27, 2018
    Inventors: Hideki ITAI, Kumiko SHIMIZU, Wataru MORI, Hajime KAWANO, Shahedul HOQUE
  • Patent number: 9978558
    Abstract: The image processing device has: a scanning direction decision unit which divides an captured image into a plurality of scanning regions and deciding a scanning direction of each scanning region based on a pattern edge captured in each scanning region in the captured image, a scanning order decision unit which performs a raster scan per pixel constituting each scanning region such that the scanning direction of each of the decided scanning region is directed to a horizontal direction of the raster scan, and a scanning image acquisition unit which acquires a scanning image by capturing each scanning region by the scanning-electron-microscope based on the decided scanning order.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: May 22, 2018
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Kumiko Shimizu, Hajime Kawano
  • Publication number: 20170323763
    Abstract: The purpose of the present invention is to provide a charged particle beam device with which it is possible to minimize the beam irradiation amount while maintaining a high measurement success rate. The present invention is a charged particle beam device provided with a control device for controlling a scan deflector on the basis of selection of a predetermined number n of frames, wherein the control device controls the scan deflector so that a charged particle beam is selectively scanned on a portion on a sample corresponding to a pixel satisfying a predetermined condition or a region including the portion on the sample from an image obtained by scanning the charged particle beam for a number m of frames (m?1), the number m of frames being smaller than the number n of frames.
    Type: Application
    Filed: July 27, 2015
    Publication date: November 9, 2017
    Inventors: Hideki ITAI, Kumiko SHIMIZU, Wataru MORI, Hajime KAWANO, Shahedul HOQUE
  • Publication number: 20170278671
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Application
    Filed: June 9, 2017
    Publication date: September 28, 2017
    Inventors: Toshiyuki YOKOSUKA, Chahn LEE, Hideyuki KAZUMI, Hajime KAWANO, Shahedul HOQUE, Kumiko SHIMIZU, Hiroyuki TAKAHASHI
  • Patent number: 9697987
    Abstract: The scanning charged particle beam microscope according to the present invention is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: July 4, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshiyuki Yokosuka, Chahn Lee, Hideyuki Kazumi, Hajime Kawano, Shahedul Hoque, Kumiko Shimizu, Hiroyuki Takahashi
  • Patent number: 9601307
    Abstract: The present invention provides a high-throughput scanning electron microscope in which a wafer (9) is held by an electrostatic chuck (10), an image is obtained using an electron beam, and the wafer surface is measured, wherein even in a case where the temperature of the wafer (9) is changed due to the environmental temperature the electron scanning microscope is capable of preventing any loss in resolution or the deterioration of the measurement reproducibility caused by thermal shrinkage accompanied by temperature change of the wafer (9). A drill hole is provided on the rear surface of the electrostatic chuck (10), and a thermometer (34) is secured in place so that the front end is brought into elastic contact with the bottom surface of the drill hole.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: March 21, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Seiichiro Kanno, Masashi Fujita, Naoya Ishigaki, Makoto Nishihara, Kumiko Shimizu
  • Publication number: 20160240348
    Abstract: The scanning charged particle beam microscope according to the present invention is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Application
    Filed: June 11, 2014
    Publication date: August 18, 2016
    Inventors: Toshiyuki YOKOSUKA, Chahn LEE, Hideyuki KAZUMI, Hajime KAWANO, Shahedul HOQUE, Kumiko SHIMIZU, Hiroyuki TAKAHASHI
  • Publication number: 20150371814
    Abstract: The present invention provides a high-throughput scanning electron microscope in which a wafer (9) is held by an electrostatic chuck (10), an image is obtained using an electron beam, and the wafer surface is measured, wherein even in a case where the temperature of the wafer (9) is changed due to the environmental temperature the electron scanning microscope is capable of preventing any loss in resolution or the deterioration of the measurement reproducibility caused by thermal shrinkage accompanied by temperature change of the wafer (9). A drill hole is provided on the rear surface of the electrostatic chuck (10), and a thermometer (34) is secured in place so that the front end is brought into elastic contact with the bottom surface of the drill hole.
    Type: Application
    Filed: February 5, 2014
    Publication date: December 24, 2015
    Inventors: Seiichiro KANNO, Masashi FUJITA, Naoya ISHIGAKI, Makoto NISHIHARA, Kumiko SHIMIZU
  • Publication number: 20150002651
    Abstract: The image processing device has: a scanning direction decision unit which divides an captured image into a plurality of scanning regions and deciding a scanning direction of each scanning region based on a pattern edge captured in each scanning region in the captured image, a scanning order decision unit which performs a raster scan per pixel constituting each scanning region such that the scanning direction of each of the decided scanning region is directed to a horizontal direction of the raster scan, and a scanning image acquisition unit which acquires a scanning image by capturing each scanning region by the scanning-electron-microscope based on the decided scanning order.
    Type: Application
    Filed: February 20, 2013
    Publication date: January 1, 2015
    Inventors: Kumiko Shimizu, Hajime Kawano
  • Patent number: 6827944
    Abstract: Provided is a composition for percutaneous administration containing a mixture of polymers forming a surface-segregated film, and (B) an active ingredient. The composition provides excellent percutaneous absorption efficacy of the active ingredient, particularly, a water-soluble active ingredient, has excellent feeling and is convenient to use.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: December 7, 2004
    Assignee: Kao Corporation
    Inventors: Masaru Hosokawa, Kumiko Shimizu, Toshio Uesaka, Ichiro Sugai, Shinobu Mori