Patents by Inventor Kun-Chen Ho
Kun-Chen Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240032439Abstract: A method of fabricating magnetoresistive random access memory, including providing a substrate, forming a bottom electrode layer, a magnetic tunnel junction stack, a top electrode layer and a hard mask layer sequentially on the substrate, wherein a material of the top electrode layer is titanium nitride, a material of the hard mask layer is tantalum or tantalum nitride, and a percentage of nitrogen in the titanium nitride gradually decreases from a top surface of top electrode layer to a bottom surface of top electrode layer, and patterning the bottom electrode layer, the magnetic tunnel junction stack, the top electrode layer and the hard mask layer into multiple magnetoresistive random access memory cells.Type: ApplicationFiled: September 27, 2023Publication date: January 25, 2024Applicant: UNITED MICROELECTRONICS CORP.Inventors: Hui-Lin Wang, Chen-Yi Weng, Chin-Yang Hsieh, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, Jing-Yin Jhang, I-Ming Tseng, Yu-Ping Wang, Chien-Ting Lin, Kun-Chen Ho, Yi-Syun Chou, Chang-Min Li, Yi-Wei Tseng, Yu-Tsung Lai, JUN XIE
-
Patent number: 11882769Abstract: A magnetoresistive random access memory (MRAM) structure is provided in the present invention, including multiple MRAM cells, and an atomic layer deposition dielectric layer between and at outer sides of the MRAM cells, wherein the material of top electrode layer is titanium nitride, and the nitrogen percentage is greater than titanium percentage and further greater than oxygen percentage in the titanium nitride, and the nitrogen percentage gradually increases inward from the top surface of top electrode layer to a depth and then start to gradually decrease to a first level and then remains constant, and the titanium percentage gradually decreases inward from the top surface of top electrode layer to the depth and then start to gradually increase to a second level and then remains constant.Type: GrantFiled: April 25, 2021Date of Patent: January 23, 2024Assignee: UNITED MICROELECTRONICS CORP.Inventors: Hui-Lin Wang, Bo-Yun Huang, Wen-Wen Zhang, Kun-Chen Ho
-
Publication number: 20230411489Abstract: A method for fabricating a semiconductor device includes the steps of forming a gate structure on a substrate, forming an interlayer dielectric (ILD) layer on the gate structure, forming a contact hole in the ILD layer adjacent to the gate structure, performing a plasma doping process to form a doped layer in the ILD layer and a source/drain region adjacent to the gate structure, forming a conductive layer in the contact hole, planarizing the conductive layer to form a contact plug, removing the doped layer to form an air gap adjacent to the contact plug, and then forming a stop layer on the ILD layer and the contact plug.Type: ApplicationFiled: July 19, 2022Publication date: December 21, 2023Applicant: UNITED MICROELECTRONICS CORP.Inventors: Wen-Wen Zhang, Kun-Chen Ho, Chun-Lung Chen, Chung-Yi Chiu, Ming-Chou Lu
-
Publication number: 20230411213Abstract: A method for fabricating a semiconductor device includes the steps of forming a gate structure on a substrate, forming a contact etch stop layer (CESL) on the gate structure, forming an interlayer dielectric (ILD) layer on the CESL, forming a contact plug in the ILD layer and adjacent to the gate structure, forming a first stop layer on the ILD layer, and removing the first stop layer and the ILD layer around the gate structure to form an air gap exposing the CESL.Type: ApplicationFiled: July 20, 2022Publication date: December 21, 2023Applicant: UNITED MICROELECTRONICS CORP.Inventors: Wen-Wen Zhang, Ming-Chou Lu, Kun-Chen Ho, Dien-Yang Lu, Chun-Lung Chen, Chung-Yi Chiu
-
Patent number: 11812669Abstract: A magnetoresistive random access memory (MRAM), including a bottom electrode layer on a substrate, a magnetic tunnel junction stack on the bottom electrode layer, a top electrode layer on the magnetic tunnel junction stack, and a hard mask layer on said top electrode layer, wherein the material of top electrode layer is titanium nitride, a material of said hard mask layer is tantalum or tantalum nitride, and the percentage of nitrogen in the titanium nitride gradually decreases from the top surface of top electrode layer to the bottom surface of top electrode layer.Type: GrantFiled: June 9, 2022Date of Patent: November 7, 2023Assignee: UNITED MICROELECTRONICS CORP.Inventors: Hui-Lin Wang, Chen-Yi Weng, Chin-Yang Hsieh, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, Jing-Yin Jhang, I-Ming Tseng, Yu-Ping Wang, Chien-Ting Lin, Kun-Chen Ho, Yi-Syun Chou, Chang-Min Li, Yi-Wei Tseng, Yu-Tsung Lai, Jun Xie
-
Publication number: 20230070777Abstract: A method for fabricating semiconductor device includes the steps of: forming a magnetic tunneling junction (MTJ) on a substrate and a top electrode on the MTJ; forming a first inter-metal dielectric (IMD) layer around the MTJ and the top electrode; forming a stop layer on the first IMD layer; forming a second IMD layer on the stop layer; performing a first etching process to remove the second IMD layer and the stop layer; performing a second etching process to remove part of the top electrode; and forming a metal interconnection to connect to the top electrode.Type: ApplicationFiled: November 10, 2022Publication date: March 9, 2023Applicant: UNITED MICROELECTRONICS CORP.Inventors: Pei-Jou Lee, Kun-Chen Ho, Hsuan-Hsu Chen, Chun-Lung Chen
-
Patent number: 11527710Abstract: A method for fabricating semiconductor device includes the steps of: forming a magnetic tunneling junction (MTJ) on a substrate and a top electrode on the MTJ; forming a first inter-metal dielectric (IMD) layer around the MTJ and the top electrode; forming a stop layer on the first IMD layer; forming a second IMD layer on the stop layer; performing a first etching process to remove the second IMD layer and the stop layer; performing a second etching process to remove part of the top electrode; and forming a metal interconnection to connect to the top electrode.Type: GrantFiled: August 1, 2019Date of Patent: December 13, 2022Assignee: UNITED MICROELECTRONICS CORP.Inventors: Pei-Jou Lee, Kun-Chen Ho, Hsuan-Hsu Chen, Chun-Lung Chen
-
Publication number: 20220384254Abstract: A metal interconnect structure includes a first metal interconnection in an inter-metal dielectric (IMD) layer on a substrate, a second metal interconnection on the first metal interconnection, and a cap layer between the first metal interconnection and the second metal interconnection. Preferably, a top surface of the first metal interconnection is even with a top surface of the IMD layer and the cap layer is made of conductive material.Type: ApplicationFiled: August 9, 2022Publication date: December 1, 2022Applicant: UNITED MICROELECTRONICS CORP.Inventors: Yi-How Chou, Tzu-Hao Fu, Tsung-Yin Hsieh, Chih-Sheng Chang, Shih-Chun Tsai, Kun-Chen Ho, Yang-Chou Lin
-
Publication number: 20220302374Abstract: A magnetoresistive random access memory (MRAM), including a bottom electrode layer on a substrate, a magnetic tunnel junction stack on the bottom electrode layer, a top electrode layer on the magnetic tunnel junction stack, and a hard mask layer on said top electrode layer, wherein the material of top electrode layer is titanium nitride, a material of said hard mask layer is tantalum or tantalum nitride, and the percentage of nitrogen in the titanium nitride gradually decreases from the top surface of top electrode layer to the bottom surface of top electrode layer.Type: ApplicationFiled: June 9, 2022Publication date: September 22, 2022Applicant: UNITED MICROELECTRONICS CORP.Inventors: Hui-Lin Wang, Chen-Yi Weng, Chin-Yang Hsieh, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, Jing-Yin Jhang, I-Ming Tseng, Yu-Ping Wang, Chien-Ting Lin, Kun-Chen Ho, Yi-Syun Chou, Chang-Min Li, Yi-Wei Tseng, Yu-Tsung Lai, JUN XIE
-
Publication number: 20220302369Abstract: A magnetoresistive random access memory (MRAM) structure is provided in the present invention, including multiple MRAM cells, and an atomic layer deposition dielectric layer between and at outer sides of the MRAM cells, wherein the material of top electrode layer is titanium nitride, and the nitrogen percentage is greater than titanium percentage and further greater than oxygen percentage in the titanium nitride, and the nitrogen percentage gradually increases inward from the top surface of top electrode layer to a depth and then start to gradually decrease to a first level and then remains constant, and the titanium percentage gradually decreases inward from the top surface of top electrode layer to the depth and then start to gradually increase to a second level and then remains constant.Type: ApplicationFiled: April 25, 2021Publication date: September 22, 2022Inventors: Hui-Lin Wang, Bo-Yun Huang, Wen-Wen Zhang, Kun-Chen Ho
-
Patent number: 11450558Abstract: A method for fabricating metal interconnect structure includes the steps of: forming a first metal interconnection in a first inter-metal dielectric (IMD) layer on a substrate; forming a cap layer on the first metal interconnection; forming a second IMD layer on the cap layer; performing a first etching process to remove part of the second IMD layer for forming an opening; performing a plasma treatment process; and performing a second etching process to remove polymers from bottom of the opening.Type: GrantFiled: August 12, 2020Date of Patent: September 20, 2022Assignee: UNITED MICROELECTRONICS CORP.Inventors: Yi-How Chou, Tzu-Hao Fu, Tsung-Yin Hsieh, Chih-Sheng Chang, Shih-Chun Tsai, Kun-Chen Ho, Yang-Chou Lin
-
Patent number: 11387408Abstract: A magnetoresistive random access memory (MRAM), including a bottom electrode layer on a substrate, a magnetic tunnel junction stack on the bottom electrode layer, and a top electrode layer on the magnetic tunnel junction stack, wherein the material of top electrode layer is titanium nitride, and the percentage of nitrogen in the titanium nitride gradually decreases from the top surface of top electrode layer to the bottom surface of top electrode layer.Type: GrantFiled: December 23, 2020Date of Patent: July 12, 2022Assignee: UNITED MICROELECTRONICS CORP.Inventors: Hui-Lin Wang, Chen-Yi Weng, Chin-Yang Hsieh, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, Jing-Yin Jhang, I-Ming Tseng, Yu-Ping Wang, Chien-Ting Lin, Kun-Chen Ho, Yi-Syun Chou, Chang-Min Li, Yi-Wei Tseng, Yu-Tsung Lai, Jun Xie
-
Publication number: 20210111334Abstract: A magnetoresistive random access memory (MRAM), including a bottom electrode layer on a substrate, a magnetic tunnel junction stack on the bottom electrode layer, and a top electrode layer on the magnetic tunnel junction stack, wherein the material of top electrode layer is titanium nitride, and the percentage of nitrogen in the titanium nitride gradually decreases from the top surface of top electrode layer to the bottom surface of top electrode layer.Type: ApplicationFiled: December 23, 2020Publication date: April 15, 2021Inventors: Hui-Lin Wang, Chen-Yi Weng, Chin-Yang Hsieh, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, Jing-Yin Jhang, I-Ming Tseng, Yu-Ping Wang, Chien-Ting Lin, Kun-Chen Ho, Yi-Syun Chou, Chang-Min Li, Yi-Wei Tseng, Yu-Tsung Lai, JUN XIE
-
Patent number: 10910553Abstract: A magnetoresistive random access memory (MRAM), including a bottom electrode layer on a substrate, a magnetic tunnel junction stack on the bottom electrode layer, and a top electrode layer on the magnetic tunnel junction stack, wherein the material of top electrode layer is titanium nitride, and the percentage of nitrogen in the titanium nitride gradually decreases from the top surface of top electrode layer to the bottom surface of top electrode layer.Type: GrantFiled: August 5, 2019Date of Patent: February 2, 2021Assignee: UNITED MICROELECTRONICS CORP.Inventors: Hui-Lin Wang, Chen-Yi Weng, Chin-Yang Hsieh, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, Jing-Yin Jhang, I-Ming Tseng, Yu-Ping Wang, Chien-Ting Lin, Kun-Chen Ho, Yi-Syun Chou, Chang-Min Li, Yi-Wei Tseng, Yu-Tsung Lai, Jun Xie
-
Publication number: 20210020828Abstract: A magnetoresistive random access memory (MRAM), including a bottom electrode layer on a substrate, a magnetic tunnel junction stack on the bottom electrode layer, and a top electrode layer on the magnetic tunnel junction stack, wherein the material of top electrode layer is titanium nitride, and the percentage of nitrogen in the titanium nitride gradually decreases from the top surface of top electrode layer to the bottom surface of top electrode layer.Type: ApplicationFiled: August 5, 2019Publication date: January 21, 2021Inventors: Hui-Lin Wang, Chen-Yi Weng, Chin-Yang Hsieh, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, Jing-Yin Jhang, I-Ming Tseng, Yu-Ping Wang, Chien-Ting Lin, Kun-Chen Ho, Yi-Syun Chou, Chang-Min Li, Yi-Wei Tseng, Yu-Tsung Lai, JUN XIE
-
Publication number: 20210013401Abstract: A method for fabricating semiconductor device includes the steps of: forming a magnetic tunneling junction (MTJ) on a substrate and a top electrode on the MTJ; forming a first inter-metal dielectric (IMD) layer around the MTJ and the top electrode; forming a stop layer on the first IMD layer; forming a second IMD layer on the stop layer; performing a first etching process to remove the second IMD layer and the stop layer; performing a second etching process to remove part of the top electrode; and forming a metal interconnection to connect to the top electrode.Type: ApplicationFiled: August 1, 2019Publication date: January 14, 2021Inventors: Pei-Jou Lee, Kun-Chen Ho, Hsuan-Hsu Chen, Chun-Lung Chen
-
Publication number: 20200373198Abstract: A method for fabricating metal interconnect structure includes the steps of: forming a first metal interconnection in a first inter-metal dielectric (IMD) layer on a substrate; forming a cap layer on the first metal interconnection; forming a second IMD layer on the cap layer; performing a first etching process to remove part of the second IMD layer for forming an opening; performing a plasma treatment process; and performing a second etching process to remove polymers from bottom of the opening.Type: ApplicationFiled: August 12, 2020Publication date: November 26, 2020Inventors: Yi-How Chou, Tzu-Hao Fu, Tsung-Yin Hsieh, Chih-Sheng Chang, Shih-Chun Tsai, Kun-Chen Ho, Yang-Chou Lin
-
Patent number: 10784153Abstract: A method for fabricating metal interconnect structure includes the steps of: forming a first metal interconnection in a first inter-metal dielectric (IMD) layer on a substrate; forming a cap layer on the first metal interconnection; forming a second IMD layer on the cap layer; performing a first etching process to remove part of the second IMD layer for forming an opening; performing a plasma treatment process; and performing a second etching process to remove polymers from bottom of the opening.Type: GrantFiled: September 18, 2018Date of Patent: September 22, 2020Assignee: UNITED MICROELECTRONICS CORP.Inventors: Yi-How Chou, Tzu-Hao Fu, Tsung-Yin Hsieh, Chih-Sheng Chang, Shih-Chun Tsai, Kun-Chen Ho, Yang-Chou Lin
-
Publication number: 20200058544Abstract: A method for fabricating metal interconnect structure includes the steps of: forming a first metal interconnection in a first inter-metal dielectric (IMD) layer on a substrate; forming a cap layer on the first metal interconnection; forming a second IMD layer on the cap layer; performing a first etching process to remove part of the second IMD layer for forming an opening; performing a plasma treatment process; and performing a second etching process to remove polymers from bottom of the opening.Type: ApplicationFiled: September 18, 2018Publication date: February 20, 2020Inventors: Yi-How Chou, Tzu-Hao Fu, Tsung-Yin Hsieh, Chih-Sheng Chang, Shih-Chun Tsai, Kun-Chen Ho, Yang-Chou Lin