Patents by Inventor Kun-Han Tsai

Kun-Han Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923205
    Abstract: A method for manufacturing a semiconductor device includes: providing a wafer-bonding stack structure having a sidewall layer and an exposed first component layer; forming a photoresist layer on the first component layer; performing an edge trimming process to at least remove the sidewall layer; and removing the photoresist layer. In this way, contaminant particles generated from the blade during the edge trimming process may fall on the photoresist layer but not fall on the first component layer, so as to protect the first component layer from being contaminated.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: March 5, 2024
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Kun-Ju Li, Ang Chan, Hsin-Jung Liu, Wei-Xin Gao, Jhih-Yuan Chen, Chun-Han Chen, Zong-Sian Wu, Chau-Chung Hou, I-Ming Lai, Fu-Shou Tsai
  • Patent number: 11681843
    Abstract: Various aspects of the disclosed technology relate to machine learning-based chain diagnosis. Faults are injected into scan chains in a circuit design. Simulations are performed on the fault-injected circuit design to determine test response patterns in response to the test patterns which are captured by the scan chains. Observed failing bit patterns are determined by comparing the unloaded test response patterns with corresponding good-machine test response patterns. Bit-reduction is performed on the observed failing bit patterns to construct training samples. Using the training samples, machine-learning models for faulty scan cell identification are trained. The bit reduction comprises pattern-based bit compression for good scan chains or cycle-based bit compression for the good scan chains. The bit reduction may further comprise bit-filtering. The bit-filtering may comprises keeping only sensitive bits on faulty scan chains for the training samples construction.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: June 20, 2023
    Assignee: Siemens Industry Software Inc.
    Inventors: Yu Huang, Gaurav Veda, Kun-Han Tsai, Wu-Tung Cheng, Mason Chern, Shi-Yu Huang
  • Patent number: 11361248
    Abstract: Various aspects of the disclosed technology relate to machine learning-based chain diagnosis. Faults are injected into scan chains in a circuit design. Simulations are performed on the fault-injected circuit design to determine observed failing bit patterns. Bit-reduction is performed on the observed failing bit patterns to construct first training samples. Using the first training samples, first-level machine-learning models are trained. Affine scan cell groups are identified. Second training samples are prepared for each of the affine scan cell groups by performing bit-filtering on a subset of the observed failing bit patterns associated with the faults being injected at scan cells in the each of the affine scan cell groups. Using the second training samples, second-level machine-learning models are trained. The first-level and second-level machine learning models can be applied in a multi-stage machine learning-based chain diagnosis process.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: June 14, 2022
    Assignee: Siemens Industry Software Inc.
    Inventors: Yu Huang, Gaurav Veda, Kun-Han Tsai, Wu-Tung Cheng, Mason Chern, Shi-Yu Huang
  • Patent number: 10977400
    Abstract: Systems and methods for a deterministic automatic test generation (ATPG) process including Timing Exception ATPG (TEA). A method includes performing an automated test pattern generation (ATPG) process that uses timing exception information to generate a test pattern for a targeted fault of a circuit design with at least one timing exception path. The method includes testing the targeted fault of the circuit design using the test pattern to produce a test result for the targeted fault.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: April 13, 2021
    Assignee: Mentor Graphics Corporation
    Inventors: Wu-Tung Cheng, Kun-Han Tsai, Naixing Wang, Chen Wang, Xijiang Lin, Mark A. Kassab, Irith Pomeranz
  • Publication number: 20200410065
    Abstract: Systems and methods for a deterministic automatic test generation (ATPG) process including Timing Exception ATPG (TEA). A method includes performing an automated test pattern generation (ATPG) process that uses timing exception information to generate a test pattern for a targeted fault of a circuit design with at least one timing exception path. The method includes testing the targeted fault of the circuit design using the test pattern to produce a test result for the targeted fault.
    Type: Application
    Filed: August 22, 2019
    Publication date: December 31, 2020
    Inventors: Wu-Tung Cheng, Kun-Han Tsai, Naixing Wang, Chen Wang, Xijiang Lin, Mark A. Kassab, Irith Pomeranz
  • Patent number: 10509073
    Abstract: Disclosed herein are exemplary methods, apparatus, and systems for performing timing-aware automatic test pattern generation (ATPG) that can be used, for example, to improve the quality of a test set generated for detecting delay defects or holding time defects. In certain embodiments, timing information derived from various sources (e.g. from Standard Delay Format (SDF) files) is integrated into an ATPG tool. The timing information can be used to guide the test generator to detect the faults through certain paths (e.g., paths having a selected length, or range of lengths, such as the longest or shortest paths). To avoid propagating the faults through similar paths repeatedly, a weighted random method can be used to improve the path coverage during test generation. Experimental results show that significant test quality improvement can be achieved when applying embodiments of timing-aware ATPG to industrial designs.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: December 17, 2019
    Assignee: Mentor Graphics Corporation
    Inventors: Xijiang Lin, Kun-Han Tsai, Mark Kassab, Chen Wang, Janusz Rajski
  • Publication number: 20190220776
    Abstract: Various aspects of the disclosed technology relate to machine learning-based chain diagnosis. Faults are injected into scan chains in a circuit design. Simulations are performed on the fault-injected circuit design to determine observed failing bit patterns. Bit-reduction is performed on the observed failing bit patterns to construct first training samples. Using the first training samples, first-level machine-learning models are trained. Affine scan cell groups are identified. Second training samples are prepared for each of the affine scan cell groups by performing bit-filtering on a subset of the observed failing bit patterns associated with the faults being injected at scan cells in the each of the affine scan cell groups. Using the second training samples, second-level machine-learning models are trained. The first-level and second-level machine learning models can be applied in a multi-stage machine learning-based chain diagnosis process.
    Type: Application
    Filed: January 16, 2019
    Publication date: July 18, 2019
    Inventors: Yu Huang, Gaurav Veda, Kun-Han Tsai, Wu-Tung Cheng, Mason Chern, Shi-Yu Huang
  • Publication number: 20190220745
    Abstract: Various aspects of the disclosed technology relate to machine learning-based chain diagnosis. Faults are injected into scan chains in a circuit design. Simulations are performed on the fault-injected circuit design to determine test response patterns in response to the test patterns which are captured by the scan chains. Observed failing bit patterns are determined by comparing the unloaded test response patterns with corresponding good-machine test response patterns. Bit-reduction is performed on the observed failing bit patterns to construct training samples. Using the training samples, machine-learning models for faulty scan cell identification are trained. The bit reduction comprises pattern-based bit compression for good scan chains or cycle-based bit compression for the good scan chains. The bit reduction may further comprise bit-filtering. The bit-filtering may comprises keeping only sensitive bits on faulty scan chains for the training samples construction.
    Type: Application
    Filed: January 16, 2019
    Publication date: July 18, 2019
    Inventors: Yu Huang, Gaurav Veda, Kun-Han Tsai, Wu-Tung Cheng, Mason Chern, Shi-Yu Huang
  • Patent number: 10317462
    Abstract: An integrated circuit for on-chip speed grading comprises test circuitry comprising scan chains and a test controller; and wide-range clock signal generation circuitry comprising phase-locked loop circuitry and frequency divider circuitry. The wide-range clock signal generation circuitry is configured to generate a wide-range test clock signal for the test circuitry to conduct a structural delay test for on-chip speed grading. The wide-range test clock signal is generated based on a test clock signal associated with the test circuitry, a frequency range selection signal and a frequency setting signal.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: June 11, 2019
    Assignee: Mentor Graphics Corporation
    Inventors: Shi-Yu Huang, Kun-Han Tsai, Wu-Tung Cheng, Tzu-Heng Huang
  • Publication number: 20180045780
    Abstract: Disclosed herein are exemplary methods, apparatus, and systems for performing timing-aware automatic test pattern generation (ATPG) that can be used, for example, to improve the quality of a test set generated for detecting delay defects or holding time defects. In certain embodiments, timing information derived from various sources (e.g. from Standard Delay Format (SDF) files) is integrated into an ATPG tool. The timing information can be used to guide the test generator to detect the faults through certain paths (e.g., paths having a selected length, or range of lengths, such as the longest or shortest paths). To avoid propagating the faults through similar paths repeatedly, a weighted random method can be used to improve the path coverage during test generation. Experimental results show that significant test quality improvement can be achieved when applying embodiments of timing-aware ATPG to industrial designs.
    Type: Application
    Filed: July 31, 2017
    Publication date: February 15, 2018
    Applicant: Mentor Graphics Corporation
    Inventors: Xijiang Lin, Kun-Han Tsai, Mark Kassab, Chen Wang, Janusz Rajski
  • Publication number: 20170328952
    Abstract: An integrated circuit for on-chip speed grading comprises test circuitry comprising scan chains and a test controller; and wide-range clock signal generation circuitry comprising phase-locked loop circuitry and frequency divider circuitry. The wide-range clock signal generation circuitry is configured to generate a wide-range test clock signal for the test circuitry to conduct a structural delay test for on-chip speed grading. The wide-range test clock signal is generated based on a test clock signal associated with the test circuitry, a frequency range selection signal and a frequency setting signal.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 16, 2017
    Inventors: Shi-Yu Huang, Kun-Han Tsai, Wu-Tung Cheng, Tzu-Heng Huang
  • Patent number: 9720038
    Abstract: Various aspects of the disclose techniques relate to techniques of testing interconnects in stacked designs. A single-pulse signal, generated by a first circuit state element on a first die, is applied to a first end of an interconnect and captured at a second end of the interconnect using a clock port of a second circuit state element on a second die. A faulty interconnect may cause the single-pulse signal too distorted to reach the threshold voltage of the second circuit element.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: August 1, 2017
    Assignee: Mentor Graphics, A Siemens Business
    Inventors: Shi-Yu Huang, Kun-Han Tsai, Wu-Tung Cheng, Jeo-Yen Lee
  • Patent number: 9720040
    Abstract: Disclosed herein are exemplary methods, apparatus, and systems for performing timing-aware automatic test pattern generation (ATPG) that can be used, for example, to improve the quality of a test set generated for detecting delay defects or holding time defects. In certain embodiments, timing information derived from various sources (e.g. from Standard Delay Format (SDF) files) is integrated into an ATPG tool. The timing information can be used to guide the test generator to detect the faults through certain paths (e.g., paths having a selected length, or range of lengths, such as the longest or shortest paths). To avoid propagating the faults through similar paths repeatedly, a weighted random method can be used to improve the path coverage during test generation. Experimental results show that significant test quality improvement can be achieved when applying embodiments of timing-aware ATPG to industrial designs.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: August 1, 2017
    Assignee: Mentor Graphics Corporation
    Inventors: Xijiang Lin, Kun-Han Tsai, Mark Kassab, Chen Wang, Janusz Rajski
  • Publication number: 20150323600
    Abstract: Disclosed herein are exemplary methods, apparatus, and systems for performing timing-aware automatic test pattern generation (ATPG) that can be used, for example, to improve the quality of a test set generated for detecting delay defects or holding time defects. In certain embodiments, timing information derived from various sources (e.g. from Standard Delay Format (SDF) files) is integrated into an ATPG tool. The timing information can be used to guide the test generator to detect the faults through certain paths (e.g., paths having a selected length, or range of lengths, such as the longest or shortest paths). To avoid propagating the faults through similar paths repeatedly, a weighted random method can be used to improve the path coverage during test generation. Experimental results show that significant test quality improvement can be achieved when applying embodiments of timing-aware ATPG to industrial designs.
    Type: Application
    Filed: July 20, 2015
    Publication date: November 12, 2015
    Applicant: MENTOR GRAPHICS CORPORATION
    Inventors: Xijiang Lin, Kun-Han Tsai, Mark Kassab, Chen Wang, Janusz Rajski
  • Patent number: 9086454
    Abstract: Disclosed herein are exemplary methods, apparatus, and systems for performing timing-aware automatic test pattern generation (ATPG) that can be used, for example, to improve the quality of a test set generated for detecting delay defects or holding time defects. In certain embodiments, timing information derived from various sources (e.g. from Standard Delay Format (SDF) files) is integrated into an ATPG tool. The timing information can be used to guide the test generator to detect the faults through certain paths (e.g., paths having a selected length, or range of lengths, such as the longest or shortest paths). To avoid propagating the faults through similar paths repeatedly, a weighted random method can be used to improve the path coverage during test generation. Experimental results show that significant test quality improvement can be achieved when applying embodiments of timing-aware ATPG to industrial designs.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: July 21, 2015
    Assignee: Mentor Graphics Corporation
    Inventors: Xijiang Lin, Kun-Han Tsai, Mark Kassab, Chen Wang, Janusz Rajski
  • Publication number: 20140347088
    Abstract: Various aspects of the disclose techniques relate to techniques of testing interconnects in stacked designs. A single-pulse signal, generated by a first circuit state element on a first die, is applied to a first end of an interconnect and captured at a second end of the interconnect using a clock port of a second circuit state element on a second die. A faulty interconnect may cause the single-pulse signal too distorted to reach the threshold voltage of the second circuit element.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 27, 2014
    Applicant: Mentor Graphics Corporation
    Inventors: Shi-Yu Huang, Kun-Han Tsai, Wu-Tung Cheng, Jeo-Yen Lee
  • Publication number: 20140246705
    Abstract: Aspects of the invention relate to techniques of testing interconnects in stacked designs for leakage defects. Logic “1” or “0” is first applied to one end of an interconnect during a first pulse. Then, logic value at the one end is captured, which triggered by an edge of a second pulse. The first pulse precedes the second pulse by a time period being selected from a plurality of delay periods. The plurality of delay periods is generated by a device shared by a plurality of interconnects.
    Type: Application
    Filed: March 3, 2014
    Publication date: September 4, 2014
    Applicant: Mentor Graphics Corporation
    Inventors: Shi-Yu Huang, Kun-Han Tsai, Wu-Tung Cheng, Yu-Hsiang Lin, Li-Ren Huang
  • Publication number: 20140047404
    Abstract: Disclosed herein are exemplary methods, apparatus, and systems for performing timing-aware automatic test pattern generation (ATPG) that can be used, for example, to improve the quality of a test set generated for detecting delay defects or holding time defects. In certain embodiments, timing information derived from various sources (e.g. from Standard Delay Format (SDF) files) is integrated into an ATPG tool. The timing information can be used to guide the test generator to detect the faults through certain paths (e.g., paths having a selected length, or range of lengths, such as the longest or shortest paths). To avoid propagating the faults through similar paths repeatedly, a weighted random method can be used to improve the path coverage during test generation. Experimental results show that significant test quality improvement can be achieved when applying embodiments of timing-aware ATPG to industrial designs.
    Type: Application
    Filed: October 14, 2013
    Publication date: February 13, 2014
    Applicant: Mentor Graphics Corporation
    Inventors: Xijiang Lin, Kun-Han Tsai, Mark Kassab, Chen Wang, Janusz Rajski
  • Patent number: 8560906
    Abstract: Disclosed herein are exemplary methods, apparatus, and systems for performing timing-aware automatic test pattern generation (ATPG) that can be used, for example, to improve the quality of a test set generated for detecting delay defects or holding time defects. In certain embodiments, timing information derived from various sources (e.g. from Standard Delay Format (SDF) files) is integrated into an ATPG tool. The timing information can be used to guide the test generator to detect the faults through certain paths (e.g., paths having a selected length, or range of lengths, such as the longest or shortest paths). To avoid propagating the faults through similar paths repeatedly, a weighted random method can be used to improve the path coverage during test generation. Experimental results show that significant test quality improvement can be achieved when applying embodiments of timing-aware ATPG to industrial designs.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: October 15, 2013
    Assignee: Mentor Graphics Corporation
    Inventors: Xijiang Lin, Kun-Han Tsai, Mark Kassab, Chen Wang, Janusz Rajski
  • Patent number: 8527232
    Abstract: Methods of diagnostic test pattern generation for small delay defects are based on identification and activation of long paths passing through diagnosis suspects. The long paths are determined according to some criteria such as path delay values calculated with SDF (Standard Delay Format) timing information and the number of logic gates on a path. In some embodiments of the invention, the long paths are the longest paths passing through a diagnosis suspect and reaching a corresponding failing observation point selected from the failure log, and N longest paths are identified for each of such pairs.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: September 3, 2013
    Assignee: Mentor Graphics Corporation
    Inventors: Ruifeng Guo, Wu-Tung Cheng, Takeo Kobayashi, Kun-Han Tsai