Patents by Inventor Kun-Tzu Lin

Kun-Tzu Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240114614
    Abstract: Disclosed is a thermal conduction-electrical conduction isolated circuit board with a ceramic substrate and a power transistor embedded, mainly comprising: a dielectric material layer, a heat-dissipating ceramic block, a securing portion, a stepped metal electrode layer, a power transistor, and a dielectric material packaging, wherein a via hole is formed in the dielectric material layer, the heat-dissipating ceramic block is correspondingly embedded in the via hole, the heat-dissipating ceramic block has a thermal conductivity higher than that of the dielectric material layer and a thickness less than that of the dielectric material layer, the stepped metal electrode layer conducts electricity and heat for the power transistor, the dielectric material packaging is configured to partially expose the source connecting pin, drain connecting pin, and gate connecting pin of the encapsulated stepped metal electrode layer.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Inventors: HO-CHIEH YU, CHEN-CHENG-LUNG LIAO, CHUN-YU LIN, JASON AN CHENG HUANG, CHIH-CHUAN LIANG, KUN-TZU CHEN, NAI-HIS HU, LIANG-YO CHEN
  • Patent number: 11872616
    Abstract: A method for manufacturing a cold-forged, extruded aluminum alloy tube includes the steps of: providing a primary material having a hollow columnar shape and made of an aluminum alloy material, and a first cold extrusion apparatus; processing the primary material to form a preform; subjecting the preform to a homogeneous annealing by heating to a temperature of about 410° C. to 510° C. and then cooling to a temperature of about 160° C. to 200° C.; testing the hardness of the preform; immersing the preform in a tank containing lubricant having a total acidity concentration of 40 to 50 mg/L at a working temperature of 80° C. to 100° C.; and subjecting the preform to cold extrusion.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: January 16, 2024
    Assignee: Jin Yuncheng Enterprise Co., Ltd.
    Inventors: Kun-Tzu Lin, Yi-Siang Lin
  • Patent number: 11638943
    Abstract: A method for manufacturing a cold-forged, extruded aluminum alloy tube includes: providing a primary material made of an aluminum alloy material, and a first cold extrusion apparatus; processing the primary material to form a preform; subjecting the preform to a homogeneous annealing by heating to a temperature of about 410° C. to 510° C. and then cooling to a temperature of about 160° C. to 200° C.; testing the hardness of the preform; immersing the preform in a lubricant which is a lipid having a viscosity index equal to or greater than 170, a flash point equal to or greater than 240° C., a pour point equal to or greater than ?24° C., and a fire point equal to or greater than 255° C.; and subjecting the preform to cold extrusion.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: May 2, 2023
    Assignee: Jin Yuncheng Enterprise Co., Ltd.
    Inventors: Kun-Tzu Lin, Yi-Siang Lin
  • Publication number: 20220203418
    Abstract: A method for manufacturing a cold-forged extruded aluminum alloy rod includes the steps of: (A) preparing a primary material and a cold extrusion apparatus including a cold extrusion die and a cold extrusion punch corresponding in position to the cold extrusion die; (B) processing the primary material to form a solid preform; (C) subjecting the preform to a homogeneous annealing; (D) testing the hardness of the preform; (E) immersing the preform in a tank containing a lubricant for a predetermined time, (F) applying talcum powder on the preform; and (C) subjecting the preform to cold forging to thereby forming the cold-forged extruded aluminum alloy rod.
    Type: Application
    Filed: December 27, 2021
    Publication date: June 30, 2022
    Inventors: Kun-Tzu LIN, Yi-Siang LIN
  • Publication number: 20220165882
    Abstract: A semiconductor includes a gate stack over a substrate. The semiconductor device further includes an interlayer dielectric (ILD) at least partially enclosing the gate stack. The ILD includes a portion doped with a large species material, wherein the portion includes a first sidewall substantially perpendicular to a top-most surface of the ILD, and the portion includes a second sidewall having a positive angle with respect to the first sidewall.
    Type: Application
    Filed: February 10, 2022
    Publication date: May 26, 2022
    Inventors: Cheng-Ta WU, Chii-Ming WU, Shiu-Ko JANGJIAN, Kun-Tzu LIN, Lan-Fang CHANG
  • Patent number: 11271114
    Abstract: A semiconductor device includes a gate stack over a substrate. The semiconductor device further includes an interlayer dielectric (ILD) at least partially enclosing the gate stack. The ILD includes a first portion doped with an oxygen-containing material. The ILD further includes a second portion doped with a large species material, wherein the second portion includes a first sidewall substantially perpendicular to a top surface of the substrate, and the second portion includes a second sidewall having a positive angle with respect to the first sidewall.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: March 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Ta Wu, Chii-Ming Wu, Shiu-Ko Jangjian, Kun-Tzu Lin, Lan-Fang Chang
  • Publication number: 20210053099
    Abstract: A method for manufacturing a cold-forged, extruded aluminum alloy tube includes the steps of: providing a primary material having a hollow columnar shape and made of an aluminum alloy material, and a first cold extrusion apparatus; processing the primary material to form a preform; subjecting the preform to a homogeneous annealing by heating to a temperature of about 410° C. to 510° C. and then cooling to a temperature of about 160° C. to 200° C.; testing the hardness of the preform; immersing the preform in a tank containing lubricant having a free total acidity concentration of 40 to 50 mg/L at a working temperature of 80° C. to 100° C.; and subjecting the preform to cold extrusion.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 25, 2021
    Inventors: KUN-TZU LIN, YI-SIANG LIN
  • Publication number: 20200324328
    Abstract: A method for manufacturing a cold-forged, extruded aluminum alloy tube includes: providing a primary material made of an aluminum alloy material, and a first cold extrusion apparatus; processing the primary material to form a preform; subjecting the preform to a homogeneous annealing by heating to a temperature of about 410° C. to 510° C. and then cooling to a temperature of about 160° C. to 200° C.; testing the hardness of the preform; immersing the preform in a lubricant which is a lipid having a viscosity index equal to or greater than 170, a flash point equal to or greater than 240° C., a pour point equal to or greater than ?24° C., and a fire point equal to or greater than 255° C.; and subjecting the preform to cold extrusion.
    Type: Application
    Filed: January 3, 2020
    Publication date: October 15, 2020
    Inventors: Kun-Tzu LIN, Yi-Siang LIN
  • Publication number: 20200295193
    Abstract: A semiconductor device includes a gate stack over a substrate. The semiconductor device further includes an interlayer dielectric (ILD) at least partially enclosing the gate stack. The ILD includes a first portion doped with an oxygen-containing material. The ILD further includes a second portion doped with a large species material, wherein the second portion includes a first sidewall substantially perpendicular to a top surface of the substrate, and the second portion includes a second sidewall having a positive angle with respect to the first sidewall.
    Type: Application
    Filed: June 1, 2020
    Publication date: September 17, 2020
    Inventors: Cheng-Ta WU, Chii-Ming WU, Shiu-Ko JANGJIAN, Kun-Tzu LIN, Lan-Fang CHANG
  • Patent number: 10672909
    Abstract: A semiconductor device including a gate stack over a substrate. The semiconductor device further includes an interlayer dielectric (ILD) at least partially enclosing the gate stack. The ILD includes a first portion doped with an oxygen-containing material, a second portion doped with a large species material, and a third portion being undoped by the oxygen-containing material and the large species material.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: June 2, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Ta Wu, Chii-Ming Wu, Shiu-Ko Jangjian, Kun-Tzu Lin, Lan-Fang Chang
  • Publication number: 20180308979
    Abstract: A semiconductor device including a gate stack over a substrate. The semiconductor device further includes an interlayer dielectric (ILD) at least partially enclosing the gate stack. The ILD includes a first portion doped with an oxygen-containing material, a second portion doped with a large species material, and a third portion being undoped by the oxygen-containing material and the large species material.
    Type: Application
    Filed: June 28, 2018
    Publication date: October 25, 2018
    Inventors: Cheng-Ta WU, Chii-Ming WU, Shiu-Ko JANGJIAN, Kun-Tzu LIN, Lan-Fang CHANG
  • Patent number: 10020401
    Abstract: A method of making a semiconductor device includes doping a first portion of an interlayer dielectric (ILD) with an oxygen-containing material, wherein the ILD is over a substrate. The method further includes doping a second portion of the ILD with a large species material. The second portion includes an area of the ILD below the first portion, and the second portion is separated from the substrate. The method further includes annealing the ILD.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: July 10, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Ta Wu, Chii-Ming Wu, Shiu-Ko Jangjian, Kun-Tzu Lin, Lan-Fang Chang
  • Publication number: 20180151740
    Abstract: A method of making a semiconductor device includes doping a first portion of an interlayer dielectric (ILD) with an oxygen-containing material, wherein the ILD is over a substrate. The method further includes doping a second portion of the ILD with a large species material. The second portion includes an area of the ILD below the first portion, and the second portion is separated from the substrate. The method further includes annealing the ILD.
    Type: Application
    Filed: January 5, 2017
    Publication date: May 31, 2018
    Inventors: Cheng-Ta WU, Chii-Ming WU, Shiu-Ko JANGJIAN, Kun-Tzu LIN, Lan-Fang CHANG
  • Patent number: 7416607
    Abstract: A fluid injection apparatus for discharging a fluid against a surface in a controlled manner is disclosed. The fluid injection apparatus includes at least one fluid supply conduit, at least one rotatable and vertically-movable fluid injector provided in fluid communication with the fluid supply conduit and at least one fluid conduit provided in the fluid injector. By selective vertical movement of the fluid injector, each fluid conduit in the fluid injector can be selectively blocked from or provided in fluid communication with the fluid supply conduit to impart a desired flow configuration of a processing fluid against the surface. By selective rotational movement of the fluid injector, a rotational or swirling motion can be imparted to the fluid as it contacts the surface.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: August 26, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kun-Tzu Lin, Cha-Hong Chung
  • Publication number: 20060269686
    Abstract: A fluid injection apparatus for discharging a fluid against a surface in a controlled manner is disclosed. The fluid injection apparatus includes at least one fluid supply conduit, at least one rotatable and vertically-movable fluid injector provided in fluid communication with the fluid supply conduit and at least one fluid conduit provided in the fluid injector. By selective vertical movement of the fluid injector, each fluid conduit in the fluid injector can be selectively blocked from or provided in fluid communication with the fluid supply conduit to impart a desired flow configuration of a processing fluid against the surface. By selective rotational movement of the fluid injector, a rotational or swirling motion can be imparted to the fluid as it contacts the surface.
    Type: Application
    Filed: May 25, 2005
    Publication date: November 30, 2006
    Inventors: Kun-Tzu Lin, Cha-Hong Chung
  • Patent number: 7066074
    Abstract: The piston of a fluid motor divides the cylinder into two variable volumes into which and from which fluid may be selectively introduced and exhausted via ports through the cylinder to relatively move the piston and the cylinder. The piston is modified to define two fixed-volume chambers that respectively communicate with the variable volumes via restrictive orifices. In selected relative piston-cylinder positions, the chambers communicate with the ports to restrict fluid flow into and out of the variable volumes and to decrease the velocity of relative piston-cylinder movement. In other relative piston-cylinder positions, the chambers do not communicate with the ports and fluid enters and leaves the variable volumes directly through the ports to relatively move the piston-cylinder at a higher velocity.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: June 27, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kun-Tzu Lin, Shih-Liang Cheng, Cheng-Chiang Chuang, Chung-Yu Tsai
  • Publication number: 20050126386
    Abstract: The piston of a fluid motor divides the cylinder into two variable volumes into which and from which fluid may be selectively introduced and exhausted via ports through the cylinder to relatively move the piston and the cylinder. The piston is modified to define two fixed-volume chambers that respectively communicate with the variable volumes via restrictive orifices. In selected relative piston-cylinder positions, the chambers communicate with the ports to restrict fluid flow into and out of the variable volumes and to decrease the velocity of relative piston-cylinder movement. In other relative piston-cylinder positions, the chambers do not communicate with the ports and fluid enters and leaves the variable volumes directly through the ports to relatively move the piston-cylinder at a higher velocity.
    Type: Application
    Filed: December 11, 2003
    Publication date: June 16, 2005
    Inventors: Kun-Tzu Lin, Shih-Liang Cheng, Cheng-Chiang Chuang, Chung-Yu Tsai
  • Patent number: 6634177
    Abstract: An apparatus for the real-time monitoring and control of a wafer temperature in a semiconductor process chamber, such as a plasma assisted deposition chamber or etch chamber, is provided. The apparatus is constructed by a wafer platform, a heat exchanger for flowing a heat exchanging medium into the wafer platform, an optical sensor for sensing the temperature of a wafer positioned on the wafer platform, and a controller for receiving a signal from the optical sensor, comparing to a pre-stored value and sending a signal to the heat exchanger to increase or decrease a flow of the heat exchanging medium. In another embodiment, a plurality of thermoelectric cooling modules is utilized for enhancing the temperature control capability of the heat exchanger by embedding the modules in the wafer platform, such as an electrostatic chuck.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: October 21, 2003
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kun-Tzu Lin, Jung-Huang Peng, Yu-Chih Huang, Chu-Song Shih
  • Publication number: 20030154723
    Abstract: An apparatus for the real-time monitoring and control of a wafer temperature in a semiconductor process chamber, such as a plasma assisted deposition chamber or etch chamber, is provided. The apparatus is constructed by a wafer platform, a heat exchanger for flowing a heat exchanging medium into the wafer platform, an optical sensor for sensing the temperature of a wafer positioned on the wafer platform, and a controller for receiving a signal from the optical sensor, comparing to a pre-stored value and sending a signal to the heat exchanger to increase or decrease a flow of the heat exchanging medium. In another embodiment, a plurality of thermoelectric cooling modules is utilized for enhancing the temperature control capability of the heat exchanger by embedding the modules in the wafer platform, such as an electrostatic chuck.
    Type: Application
    Filed: February 15, 2002
    Publication date: August 21, 2003
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kun-Tzu Lin, Jung-Huang Peng, Yu-Chih Huang, Chu-Song Shih