Patents by Inventor Kun-Yung Chang

Kun-Yung Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9356775
    Abstract: Methods and apparatus are described for synchronously stepping at least one of a data phase interpolator (PI) code or a crossing PI code in a clock and data recovery (CDR) circuit until one or more preset criteria are satisfied. One example method generally includes determining that a condition has been met; based on the determination, stepping, in a CDR circuit, at least one of a data PI code or a crossing PI code for each cycle of a clock; stopping the stepping based on one or more criteria to generate a predetermined state of the data PI code and the crossing PI code, wherein the predetermined state comprises an offset between the data PI code and the crossing PI code; receiving a data stream; and performing clock and data recovery on the data stream based on the offset between the data PI code and the crossing PI code.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: May 31, 2016
    Assignee: XILINX, INC.
    Inventors: Yu Xu, Cheng-Hsiang Hsieh, Yohan Frans, Kun-Yung Chang
  • Patent number: 9325489
    Abstract: A data receiver implemented in an integrated circuit is described. The data receiver comprises an input receiving a data signal; a first equalization circuit coupled to receive the data signal, wherein the first equalization circuit is used to receive the data of the data signal; and a second equalization circuit coupled to receive the data signal, wherein the second equalization circuit is used to adjust a clock phase offset.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: April 26, 2016
    Assignee: XILINX, INC.
    Inventors: Cheng-Hsiang Hsieh, Kun-Yung Chang, Jafar Savoj
  • Patent number: 9313054
    Abstract: A circuit for filtering inter-symbol interference in an integrated circuit is described. The circuit comprises a first stage coupled to receive digital samples of an input signal. The first stage generates first decision outputs based upon the digital samples. A second stage is coupled to receive the digital samples of the input signal. The second stage comprises a filter receiving the first decision outputs and generating second decision outputs based upon the digital samples of the input signal and detected inter-symbol interference associated with the first decision outputs. A method of filtering inter-symbol interference in an integrated circuit is also described.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: April 12, 2016
    Assignee: XILINX, INC.
    Inventors: Yu Liao, Hongtao Zhang, Geoffrey Zhang, Kun-Yung Chang
  • Patent number: 9313017
    Abstract: In an example, a clock data recovery (CDR) circuit for a receiver includes a timing error detector circuit, a loop filter, and a phase interpolator. The timing error detector circuit is coupled to receive, at a baud-rate, data samples and error samples for symbols received by the receiver. The timing error detector circuit is operable to generate both a timing error value and an estimated waveform value per symbol based on the data samples and the error samples. The loop filter is coupled to the timing error detector to receive timing error values. The phase interpolator is coupled to the loop filter to receive filtered timing error values, the phase interpolator operable to generate a control signal to adjust a sampling phase used to generate the data samples and the error samples.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: April 12, 2016
    Assignee: XILINX, INC.
    Inventors: Yu Liao, Geoffrey Zhang, Hongtao Zhang, Zhaoyin D. Wu, Kun-Yung Chang
  • Publication number: 20160087818
    Abstract: A multi-phase partial response receiver supports various incoming data rates by sampling PrDFE output values at a selected one of at least two clock phases. The receiver includes a calibration circuit that performs a timing analysis of critical data paths in the circuit, and this analysis is then used to select the particular clock phase used to latch the output values. These techniques permit the multiplexer outputs from for each phase of the partial response receiver to directly drive selection of a multiplexer for the ensuing phase, i.e., by avoiding regions of instability or uncertainty in the respective multiplexer outputs.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 24, 2016
    Inventors: Chintan S. Thakkar, Kun-Yung Chang, Ting Wu
  • Patent number: 9209960
    Abstract: A method relates generally to a receiver. In such a method, a check of a clock and data recovery block of the receiver for a metastable state is performed. A phase input to a phase interpolator of the receiver is changed to cause the clock and data recovery block of the receiver to exit the metastable state within a time limit. To check for the metastable state, a phase difference in received data is determined, and the phase difference is determined to be less than a threshold for the clock and data recovery block being in the metastable state.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: December 8, 2015
    Assignee: XILINX, INC.
    Inventors: Caleb S. Leung, Alan C. Wong, Christopher J. Borrelli, Yu Xu, Yohan Frans, Kun-Yung Chang
  • Patent number: 9178726
    Abstract: A multi-phase partial response receiver supports various incoming data rates by sampling PrDFE output values at a selected one of at least two clock phases. The receiver includes a calibration circuit that performs a timing analysis of critical data paths in the circuit, and this analysis is then used to select the particular clock phase used to latch the output values. These techniques permit the multiplexer outputs from for each phase of the partial response receiver to directly drive selection of a multiplexer for the ensuing phase, i.e., by avoiding regions of instability or uncertainty in the respective multiplexer outputs.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: November 3, 2015
    Assignee: Rambus Inc.
    Inventors: Chintan S. Thakkar, Kun-Yung Chang, Ting Wu
  • Publication number: 20150312062
    Abstract: A multi-phase partial response receiver supports various incoming data rates by sampling PrDFE output values at a selected one of at least two clock phases. The receiver includes a calibration circuit that performs a timing analysis of critical data paths in the circuit, and this analysis is then used to select the particular clock phase used to latch the output values. These techniques permit the multiplexer outputs from for each phase of the partial response receiver to directly drive selection of a multiplexer for the ensuing phase, i.e., by avoiding regions of instability or uncertainty in the respective multiplexer outputs.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 29, 2015
    Inventors: Chintan S. Thakkar, Kun-Yung Chang, Ting Wu
  • Publication number: 20150293557
    Abstract: A memory controller having a data receiver to sample data at a sample timing using a strobe signal, wherein the data and the strobe signal are sent by a memory device in connection with a read operation initiated by the memory controller, and a strobe receiver to receive the strobe signal, wherein a phase of the strobe signal has a drift relative to a reference by an amount. The memory controller further having a monitoring circuit to monitor the strobe signal and determine the amount of the drift, and an adjustment circuit to update the sample timing of the data receiver based on the amount of drift determined by the monitoring signal.
    Type: Application
    Filed: June 26, 2015
    Publication date: October 15, 2015
    Inventors: Scott C. Best, Abhijit M. Abhyankar, Kun-Yung Chang, Frank Lambrecht
  • Patent number: 9124390
    Abstract: A communication channel includes a first component having a transmitter coupled to a normal signal source, and a second component having a receiver coupled to a normal signal destination. A communication link couples the first and second components. Calibration logic provides for setting an operation value for a parameter of the communication channel, such as by executing an exhaustive calibration sequence at initialization of the link. A tracking circuit, including a monitoring function, tracks drift in the parameter by monitoring a feedback signal that has a characteristic that correlates with drift in the communication channel, and updates, or indicates the need for updating of, the operation value of the parameter in response to the monitoring function.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: September 1, 2015
    Assignee: RAMBUS INC.
    Inventors: Scott C Best, Abhijit M Abhyankar, Kun-Yung Chang, Frank Lambrecht
  • Patent number: 9083280
    Abstract: A phase detection circuit can include two phase detectors that each generate a non-zero output in response to input signals being aligned in phase. The input signals are based on two periodic signals. The phase detection circuit subtracts the output signal of one phase detector from the output signal of the other phase detector to generate a signal having a zero value when the periodic signals are in phase. Alternatively, a phase detector generates a phase comparison signal indicative of a phase difference between periodic signals. The phase comparison signal has a non-zero value in response to input signals to the phase detector being aligned in phase. The input signals are based on the periodic signals. An output circuit receives the phase comparison signal and generates an output having a zero value in response to the periodic signals being aligned in phase.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: July 14, 2015
    Assignee: Rambus Inc.
    Inventors: Brian Leibowitz, Hae-Chang Lee, Farshid Aryanfar, Kun-Yung Chang, Jie Shen
  • Publication number: 20150180642
    Abstract: A data receiver implemented in an integrated circuit is described. The data receiver comprises an input receiving a data signal; a first equalization circuit coupled to receive the data signal, wherein the first equalization circuit is used to receive the data of the data signal; and a second equalization circuit coupled to receive the data signal, wherein the second equalization circuit is used to adjust a clock phase offset.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 25, 2015
    Applicant: Xilinx, Inc.
    Inventors: Cheng-Hsiang Hsieh, Kun-Yung Chang, Jafar Savoj
  • Patent number: 9065453
    Abstract: A signal distribution network has segments that each have a buffer circuit, a transmission line coupled to the buffer circuit, an inductor coupled to the buffer circuit through the transmission line, and a variable capacitance circuit coupled to the inductor and coupled to the buffer circuit through the transmission line. A capacitance of the variable capacitance circuit is set to determine a phase and an amplitude of a signal transmitted through the transmission line. A signal distribution network can include a phase detector, a loop filter circuit, and a resonant delay circuit. The phase detector compares a phase of a first periodic signal to a phase of a second periodic signal. The resonant delay circuit has a variable impedance circuit having an impedance that varies based on changes in an output signal of the loop filter circuit.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: June 23, 2015
    Assignee: Silicon Image, Inc.
    Inventors: Farshid Aryanfar, Hae-Chang Lee, Kun-Yung Chang, Ting Wu, Carl Werner, Masoud Koochakzadeh
  • Patent number: 9042438
    Abstract: A multi-phase partial response receiver supports various incoming data rates by sampling PrDFE output values at a selected one of at least two clock phases. The receiver includes a calibration circuit that performs a timing analysis of critical data paths in the circuit, and this analysis is then used to select the particular clock phase used to latch the output values. These techniques permit the multiplexer outputs from for each phase of the partial response receiver to directly drive selection of a multiplexer for the ensuing phase, i.e., by avoiding regions of instability or uncertainty in the respective multiplexer outputs.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: May 26, 2015
    Assignee: Rambus Inc.
    Inventors: Chintan S. Thakkar, Kun-Yung Chang, Ting Wu
  • Publication number: 20150103875
    Abstract: A multi-phase partial response receiver supports various incoming data rates by sampling PrDFE output values at a selected one of at least two clock phases. The receiver includes a calibration circuit that performs a timing analysis of critical data paths in the circuit, and this analysis is then used to select the particular clock phase used to latch the output values. These techniques permit the multiplexer outputs from for each phase of the partial response receiver to directly drive selection of a multiplexer for the ensuing phase, i.e., by avoiding regions of instability or uncertainty in the respective multiplexer outputs.
    Type: Application
    Filed: December 16, 2014
    Publication date: April 16, 2015
    Inventors: Chintan S. Thakkar, Kun-Yung Chang, Ting Wu
  • Patent number: 8942319
    Abstract: A multi-phase partial response receiver supports various incoming data rates by sampling PrDFE output values at a selected one of at least two clock phases. The receiver includes a calibration circuit that performs a timing analysis of critical data paths in the circuit, and this analysis is then used to select the particular clock phase used to latch the output values. These techniques permit the multiplexer outputs from for each phase of the partial response receiver to directly drive selection of a multiplexer for the ensuing phase, i.e., by avoiding regions of instability or uncertainty in the respective multiplexer outputs.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: January 27, 2015
    Assignee: Rambus Inc.
    Inventors: Chintan S. Thakkar, Kun-Yung Chang, Ting Wu
  • Publication number: 20140340120
    Abstract: A phase detection circuit can include two phase detectors that each generate a non-zero output in response to input signals being aligned in phase. The input signals are based on two periodic signals. The phase detection circuit subtracts the output signal of one phase detector from the output signal of the other phase detector to generate a signal having a zero value when the periodic signals are in phase. Alternatively, a phase detector generates a phase comparison signal indicative of a phase difference between periodic signals. The phase comparison signal has a non-zero value in response to input signals to the phase detector being aligned in phase. The input signals are based on the periodic signals. An output circuit receives the phase comparison signal and generates an output having a zero value in response to the periodic signals being aligned in phase.
    Type: Application
    Filed: August 5, 2014
    Publication date: November 20, 2014
    Inventors: Brian Leibowitz, Hae-Chang Lee, Farshid Aryanfar, Kun-Yung Chang, Jie Shen
  • Publication number: 20140333356
    Abstract: A signal distribution network has segments that each have a buffer circuit, a transmission line coupled to the buffer circuit, an inductor coupled to the buffer circuit through the transmission line, and a variable capacitance circuit coupled to the inductor and coupled to the buffer circuit through the transmission line. A capacitance of the variable capacitance circuit is set to determine a phase and an amplitude of a signal transmitted through the transmission line. A signal distribution network can include a phase detector, a loop filter circuit, and a resonant delay circuit. The phase detector compares a phase of a first periodic signal to a phase of a second periodic signal. The resonant delay circuit has a variable impedance circuit having an impedance that varies based on changes in an output signal of the loop filter circuit.
    Type: Application
    Filed: November 25, 2013
    Publication date: November 13, 2014
    Applicant: Rambus Inc.
    Inventors: Farshid Aryanfar, Hae-Chang Lee, Kun-Yung Chang, Ting Wu, Carl Werner, Masoud Koochakzadeh
  • Patent number: 8841948
    Abstract: An apparatus relates generally to an injection-controlled-locked phase-locked loop (“ICL-PLL”) is disclosed. In this apparatus, a delay-locked loop is coupled to an injection-locked phase-locked loop. An injection-locked oscillator of the injection-locked phase-locked loop is in a feedback loop path of the delay-locked loop.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 23, 2014
    Assignee: Xilinx, Inc.
    Inventors: Jun-Chau Chien, Wayne Fang, Parag Upadhyaya, Jafar Savoj, Kun-Yung Chang
  • Publication number: 20140185725
    Abstract: A communication channel includes a first component having a transmitter coupled to a normal signal source, and a second component having a receiver coupled to a normal signal destination. A communication link couples the first and second components. Calibration logic provides for setting an operation value for a parameter of the communication channel, such as by executing an exhaustive calibration sequence at initialization of the link. A tracking circuit, including a monitoring function, tracks drift in the parameter by monitoring a feedback signal that has a characteristic that correlates with drift in the communication channel, and updates, or indicates the need for updating of, the operation value of the parameter in response to the monitoring function.
    Type: Application
    Filed: July 23, 2013
    Publication date: July 3, 2014
    Applicant: RAMBUS INC.
    Inventors: SCOTT C. BEST, ABHIJIT M. ABHYANKAR, KUN-YUNG CHANG, FRANK LAMBRECHT