Patents by Inventor Kunal R. Pandit

Kunal R. Pandit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220213465
    Abstract: The present invention relates to a method for concentrating a biological sample containing nucleic acids by using magnetic chitosan microparticles and subsequently performing a PCR reaction on the nucleic acids captured on the microparticles. The chitosan microparticles added to the biological sample at a PCR compatible pH are mechanically agitated to provide for cell lysis and simultaneous DNA capture, and then serve as a solid support for the nucleic acid template during the PCR reaction. As the chitosan microparticles are utilized for lysis and the nucleic acids do not need to be removed from the microparticles before PCR, the ease of the sample preparation procedure is dramatically improved.
    Type: Application
    Filed: November 15, 2021
    Publication date: July 7, 2022
    Applicants: University of Maryland, College Park, Canon U.S.A., Inc.
    Inventors: Ian M. White, Srinivasa Raghavan, Kunal R. Pandit, Imaly Nanayakkara, Weidong Cao
  • Patent number: 11174478
    Abstract: The present invention relates to a method for concentrating a biological sample containing nucleic acids by using magnetic chitosan microparticles and subsequently performing a PCR reaction on the nucleic acids captured on the microparticles. The chitosan microparticles added to the biological sample at a PCR compatible pH are mechanically agitated to provide for cell lysis and simultaneous DNA capture, and then serve as a solid support for the nucleic acid template during the PCR reaction. As the chitosan microparticles are utilized for lysis and the nucleic acids do not need to be removed from the microparticles before PCR, the ease of the sample preparation procedure is dramatically improved.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: November 16, 2021
    Assignees: University of Maryland, College Park, Canon U.S.A., Inc.
    Inventors: Ian M. White, Srinivasa Raghavan, Kunal R. Pandit, Imaly Nanayakkara, Weidong Cao
  • Patent number: 10675624
    Abstract: The invention relates to a method and system for generating droplets of an aqueous solution on a microfluidic chip with an air continuous phase. Specifically, the droplet generator according to the present invention is integrated into a microfluidic chip to generate and introduce droplets of an aqueous solution into the microfluidic chip. The droplets travelling in a network of chip channels may be captured in on-chip traps in a manner defined by hydrodynamic resistances of chip channels. A biological reaction may be performed on a droplet trapped on the microfluidic chip.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: June 9, 2020
    Assignee: University of Maryland, College Park
    Inventors: Ian M. White, Srinivasa Raghavan, Kunal R. Pandit
  • Publication number: 20190224672
    Abstract: The invention relates to a method and system for generating droplets of an aqueous solution on a microfluidic chip with an air continuous phase. Specifically, the droplet generator according to the present invention is integrated into a microfluidic chip to generate and introduce droplets of an aqueous solution into the microfluidic chip. The droplets travelling in a network of chip channels may be captured in on-chip traps in a manner defined by hydrodynamic resistances of chip channels. A biological reaction may be performed on a droplet trapped on the microfluidic chip.
    Type: Application
    Filed: January 18, 2019
    Publication date: July 25, 2019
    Applicant: University of Maryland, College Park
    Inventors: Ian M. White, Srinivasa Raghavan, Kunal R. Pandit
  • Patent number: 10183291
    Abstract: The invention relates to a method and system for generating droplets of an aqueous solution on a microfluidic chip with an air continuous phase. Specifically, the droplet generator according to the present invention is integrated into a microfluidic chip to generate and introduce droplets of an aqueous solution into the microfluidic chip. The droplets travelling in a network of chip channels may be captured in on-chip traps in a manner defined by hydrodynamic resistances of chip channels. A biological reaction may be performed on a droplet trapped on the microfluidic chip.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: January 22, 2019
    Assignee: University of Maryland, College Park
    Inventors: Ian M. White, Srinivasa Raghavan, Kunal R. Pandit
  • Patent number: 9855555
    Abstract: The invention relates to a method and system for generating droplets of an aqueous solution on a microfluidic chip with an air continuous phase. Specifically, the droplet generator according to the present invention is integrated into a microfluidic chip to generate and introduce droplets of an aqueous solution into the microfluidic chip. The droplets travelling in a network of chip channels may be captured in on-chip traps in a manner defined by hydrodynamic resistances of chip channels. A biological reaction may be performed on a droplet trapped on the microfluidic chip.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: January 2, 2018
    Assignee: University of Maryland
    Inventors: Ian M. White, Srinivasa Raghavan, Kunal R. Pandit
  • Publication number: 20160340668
    Abstract: The present invention relates to a method for concentrating a biological sample containing nucleic acids by using magnetic chitosan microparticles and subsequently performing a PCR reaction on the nucleic acids captured on the microparticles. The chitosan microparticles added to the biological sample at a PCR compatible pH are mechanically agitated to provide for cell lysis and simultaneous DNA capture, and then serve as a solid support for the nucleic acid template during the PCR reaction. As the chitosan microparticles are utilized for lysis and the nucleic acids do not need to be removed from the microparticles before PCR, the ease of the sample preparation procedure is dramatically improved.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 24, 2016
    Applicants: UNIVERSITY OF MARYLAND, CANON U.S. LIFE SCIENCES, INC.
    Inventors: IAN M. WHITE, SRINIVASA RAGHAVAN, KUNAL R. PANDIT, IMALY NANAYAKKARA, WEIDONG CAO
  • Publication number: 20160339430
    Abstract: The invention relates to a method and system for generating droplets of an aqueous solution on a microfluidic chip with an air continuous phase. Specifically, the droplet generator according to the present invention is integrated into a microfluidic chip to generate and introduce droplets of an aqueous solution into the microfluidic chip. The droplets travelling in a network of chip channels may be captured in on-chip traps in a manner defined by hydrodynamic resistances of chip channels. A biological reaction may be performed on a droplet trapped on the microfluidic chip.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 24, 2016
    Applicant: University of Maryland
    Inventors: Ian M. White, Srinivasa Raghavan, Kunal R. Pandit