Patents by Inventor Kuniharu Nomoto

Kuniharu Nomoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220223866
    Abstract: Graphene is formed with a practically uniform thickness on an uneven object. The object is immersed in a graphene oxide solution, and then taken out of the solution and dried; alternatively, the object and an electrode are immersed therein and voltage is applied between the electrode and the object used as an anode. Graphene oxide is negatively charged, and thus is drawn to and deposited on a surface of the object, with a practically uniform thickness. After that, the object is heated in vacuum or a reducing atmosphere, so that the graphene oxide is reduced to be graphene. In this manner, a graphene layer with a practically uniform thickness can be formed even on a surface of the uneven object.
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Inventors: Teppei OGUNI, Takeshi OSADA, Toshihiko TAKEUCHI, Kuniharu NOMOTO
  • Publication number: 20220199998
    Abstract: An object is to reduce variation in shape of crystals that are to be formed. Solutions containing respective raw materials are made in an environment where an oxygen concentration is lower than that in air, the solutions containing the respective raw materials are mixed in an environment where an oxygen concentration is lower than that in air to form a mixture solution, and with use of the mixture solution, a composite oxide is formed by a hydrothermal method.
    Type: Application
    Filed: March 11, 2022
    Publication date: June 23, 2022
    Inventors: Takuya MIWA, Kuniharu NOMOTO, Junpei MOMO
  • Patent number: 11296322
    Abstract: Graphene is formed with a practically uniform thickness on an uneven object. The object is immersed in a graphene oxide solution, and then taken out of the solution and dried; alternatively, the object and an electrode are immersed therein and voltage is applied between the electrode and the object used as an anode. Graphene oxide is negatively charged, and thus is drawn to and deposited on a surface of the object, with a practically uniform thickness. After that, the object is heated in vacuum or a reducing atmosphere, so that the graphene oxide is reduced to be graphene. In this manner, a graphene layer with a practically uniform thickness can be formed even on a surface of the uneven object.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: April 5, 2022
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Teppei Oguni, Takeshi Osada, Toshihiko Takeuchi, Kuniharu Nomoto
  • Patent number: 11283075
    Abstract: An object is to reduce variation in shape of crystals that are to be formed. Solutions containing respective raw materials are made in an environment where an oxygen concentration is lower than that in air, the solutions containing the respective raw materials are mixed in an environment where an oxygen concentration is lower than that in air to form a mixture solution, and with use of the mixture solution, a composite oxide is formed by a hydrothermal method.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: March 22, 2022
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Takuya Miwa, Kuniharu Nomoto, Junpei Momo
  • Publication number: 20210175507
    Abstract: The positive electrode active material layer includes a plurality of particles of a positive electrode active material and a reaction mixture where reduced graphene oxide is bonded to a polymer having a functional group as a side chain. The reduced graphene oxide has a sheet-like shape and high conductivity and thus functions as a conductive additive by being in contact with the plurality of particles of the positive electrode active material. The reaction mixture serves as an excellent binder since the reduced graphene oxide is bonded to the polymer. Therefore, even a small amount of the reaction mixture where the reduced graphene oxide is covalently bonded to the polymer excellently serves as a conductive additive and a binder.
    Type: Application
    Filed: February 18, 2021
    Publication date: June 10, 2021
    Inventors: Masaki YAMAKAJI, Kuniharu NOMOTO
  • Patent number: 10938035
    Abstract: The positive electrode active material layer includes a plurality of particles of a positive electrode active material and a reaction mixture where reduced graphene oxide is bonded to a polymer having a functional group as a side chain. The reduced graphene oxide has a sheet-like shape and high conductivity and thus functions as a conductive additive by being in contact with the plurality of particles of the positive electrode active material. The reaction mixture serves as an excellent binder since the reduced graphene oxide is bonded to the polymer. Therefore, even a small amount of the reaction mixture where the reduced graphene oxide is covalently bonded to the polymer excellently serves as a conductive additive and a binder.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: March 2, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masaki Yamakaji, Kuniharu Nomoto
  • Publication number: 20200402683
    Abstract: A power storage device with high output is provided, in which the specific surface area is increased while keeping the easy-to-handle particle size of its active material. The power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte. The negative electrode active material layer includes a negative electrode active material which is a particle in which a plurality of slices of graphite is overlapped with each other with a gap therebetween. It is preferable that the grain diameter of the particle be 1 ?m to 50 ?m. Further, it is preferable that the electrolyte be in contact with the gap between the slices of graphite.
    Type: Application
    Filed: August 12, 2020
    Publication date: December 24, 2020
    Inventors: Junpei MOMO, Hiroatsu TODORIKI, Kuniharu NOMOTO
  • Publication number: 20200350585
    Abstract: The formation method of graphene includes the steps of forming a layer including graphene oxide over a first conductive layer; and supplying a potential at which the reduction reaction of the graphene oxide occurs to the first conductive layer in an electrolyte where the first conductive layer as a working electrode and a second conductive layer with a as a counter electrode are immersed. A manufacturing method of a power storage device including at least a positive electrode, a negative electrode, an electrolyte, and a separator includes a step of forming graphene for an active material layer of one of or both the positive electrode and the negative electrode by the formation method.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 5, 2020
    Inventors: Hiroatsu TODORIKI, Yumiko SAITO, Takahiro KAWAKAMI, Kuniharu NOMOTO, Mikio YUKAWA
  • Patent number: 10748673
    Abstract: A power storage device with high output is provided, in which the specific surface area is increased while keeping the easy-to-handle particle size of its active material. The power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte. The negative electrode active material layer includes a negative electrode active material which is a particle in which a plurality of slices of graphite is overlapped with each other with a gap therebetween. It is preferable that the grain diameter of the particle be 1 ?m to 50 ?m. Further, it is preferable that the electrolyte be in contact with the gap between the slices of graphite.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: August 18, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junpei Momo, Hiroatsu Todoriki, Kuniharu Nomoto
  • Publication number: 20200259179
    Abstract: Graphene is formed with a practically uniform thickness on an uneven object. The object is immersed in a graphene oxide solution, and then taken out of the solution and dried; alternatively, the object and an electrode are immersed therein and voltage is applied between the electrode and the object used as an anode. Graphene oxide is negatively charged, and thus is drawn to and deposited on a surface of the object, with a practically uniform thickness. After that, the object is heated in vacuum or a reducing atmosphere, so that the graphene oxide is reduced to be graphene. In this manner, a graphene layer with a practically uniform thickness can be formed even on a surface of the uneven object.
    Type: Application
    Filed: April 30, 2020
    Publication date: August 13, 2020
    Inventors: Teppei OGUNI, Takeshi OSADA, Toshihiko TAKEUCHI, Kuniharu NOMOTO
  • Patent number: 10644315
    Abstract: Graphene is formed with a practically uniform thickness on an uneven object. The object is immersed in a graphene oxide solution, and then taken out of the solution and dried; alternatively, the object and an electrode are immersed therein and voltage is applied between the electrode and the object used as an anode. Graphene oxide is negatively charged, and thus is drawn to and deposited on a surface of the object, with a practically uniform thickness. After that, the object is heated in vacuum or a reducing atmosphere, so that the graphene oxide is reduced to be graphene. In this manner, a graphene layer with a practically uniform thickness can be formed even on a surface of the uneven object.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: May 5, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Teppei Oguni, Takeshi Osada, Toshihiko Takeuchi, Kuniharu Nomoto
  • Publication number: 20200052299
    Abstract: The formation method of graphene includes the steps of forming a layer including graphene oxide over a first conductive layer; and supplying a potential at which the reduction reaction of the graphene oxide occurs to the first conductive layer in an electrolyte where the first conductive layer as a working electrode and a second conductive layer with a as a counter electrode are immersed. A manufacturing method of a power storage device including at least a positive electrode, a negative electrode, an electrolyte, and a separator includes a step of forming graphene for an active material layer of one of or both the positive electrode and the negative electrode by the formation method.
    Type: Application
    Filed: October 11, 2019
    Publication date: February 13, 2020
    Inventors: Hiroatsu TODORIKI, Yumiko SAITO, Takahiro KAWAKAMI, Kuniharu NOMOTO, Mikio YUKAWA
  • Patent number: 10461332
    Abstract: The formation method of graphene includes the steps of forming a layer including graphene oxide over a first conductive layer; and supplying a potential at which the reduction reaction of the graphene oxide occurs to the first conductive layer in an electrolyte where the first conductive layer as a working electrode and a second conductive layer with a as a counter electrode are immersed. A manufacturing method of a power storage device including at least a positive electrode, a negative electrode, an electrolyte, and a separator includes a step of forming graphene for an active material layer of one of or both the positive electrode and the negative electrode by the formation method.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: October 29, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroatsu Todoriki, Yumiko Saito, Takahiro Kawakami, Kuniharu Nomoto, Mikio Yukawa
  • Publication number: 20190245206
    Abstract: An object is to reduce variation in shape of crystals that are to be formed. Solutions containing respective raw materials are made in an environment where an oxygen concentration is lower than that in air, the solutions containing the respective raw materials are mixed in an environment where an oxygen concentration is lower than that in air to form a mixture solution, and with use of the mixture solution, a composite oxide is formed by a hydrothermal method.
    Type: Application
    Filed: April 19, 2019
    Publication date: August 8, 2019
    Inventors: Takuya MIWA, Kuniharu NOMOTO, Junpei MOMO
  • Patent number: 10270097
    Abstract: An object is to reduce variation in shape of crystals that are to be formed. Solutions containing respective raw materials are made in an environment where an oxygen concentration is lower than that in air, the solutions containing the respective raw materials are mixed in an environment where an oxygen concentration is lower than that in air to form a mixture solution, and with use of the mixture solution, a composite oxide is formed by a hydrothermal method.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: April 23, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takuya Miwa, Kuniharu Nomoto, Junpei Momo
  • Patent number: 10164243
    Abstract: An energy storage device having high capacity per weight or volume and a positive electrode active material for the energy storage device are manufactured. A surface of a main material included in the positive electrode active material for the energy storage device is coated with two-dimensional carbon. The main material included in the positive electrode active material is coated with a highly conductive material which has a structure expanding two-dimensionally and whose thickness is ignorable, whereby the amount of carbon coating can be reduced and an energy storage device having capacity close to theoretical capacity can be obtained even when a conduction auxiliary agent is not used or the amount of the conduction auxiliary agent is extremely small. Accordingly, the amount of carbon coating in a positive electrode and the volume of the conduction auxiliary agent can be reduced; consequently, the volume of the positive electrode can be reduced.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: December 25, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kuniharu Nomoto, Takuya Miwa, Masaki Yamakaji, Takahiro Kawakami
  • Patent number: 10096428
    Abstract: At least one of an aqueous solution A containing lithium, an aqueous solution B containing iron, manganese, cobalt, or nickel, and an aqueous solution C containing a phosphoric acid includes graphene oxide. The aqueous solution A is dripped into the aqueous solution C, so that a mixed solution E including a precipitate D is prepared. The mixed solution E is dripped into the aqueous solution B, so that a mixed solution G including a precipitate F is prepared. The mixed solution G is subjected to heat treatment in a pressurized atmosphere, so that a mixed solution H is prepared, and the mixed solution H is then filtered. Thus, particles of a compound containing lithium and oxygen which have a small size are obtained.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: October 9, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takuya Miwa, Kuniharu Nomoto, Nobuhiro Inoue
  • Publication number: 20180287160
    Abstract: The positive electrode active material layer includes a plurality of particles of a positive electrode active material and a reaction mixture where reduced graphene oxide is bonded to a polymer having a functional group as a side chain. The reduced graphene oxide has a sheet-like shape and high conductivity and thus functions as a conductive additive by being in contact with the plurality of particles of the positive electrode active material. The reaction mixture serves as an excellent binder since the reduced graphene oxide is bonded to the polymer. Therefore, even a small amount of the reaction mixture where the reduced graphene oxide is eovalently bonded to the polymer excellently serves as a conductive additive and a binder.
    Type: Application
    Filed: June 6, 2018
    Publication date: October 4, 2018
    Inventors: Masaki YAMAKAJI, Kuniharu NOMOTO
  • Patent number: 10044071
    Abstract: The present invention provides a non-aqueous electrolyte secondary battery with various improved battery characteristics and a method for manufacturing such a non-aqueous electrolyte secondary battery. In the present invention, the battery manufacturing method includes accommodating and sealing a flat battery element (4) in which a positive electrode plate (41) and a negative electrode plate (42) stacked together via a separator (43), together with a non-aqueous electrolyte including a surplus electrolyte and at least one kind of electrolyte additive, in a laminate film exterior member (5), and then, subjecting the thus-assembled battery (1) to charging operation including at least initial charging in a state where a pressure is applied to a flat surface of the battery element from the outside of the exterior member (5).
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: August 7, 2018
    Assignees: AUTOMOTIVE ENERGY SUPPLY CORPORATION, NISSAN MOTOR CO., LTD.
    Inventors: Sayaka Yonehara, Keisuke Matsumoto, Takashi Honda, Kousuke Hagiyama, Fumihiro Kawamura, Osamu Shimamura, Kazuki Miyatake, Ikuma Matsuzaki, Ryuuta Yamaguchi, Kuniharu Nomoto
  • Patent number: 9935313
    Abstract: Occlusion and release of lithium ion are likely to one-dimensionally occur in the b-axis direction of a crystal in a lithium-containing composite oxide having an olivine structure. Thus, a positive electrode in which the b-axes of lithium-containing composite oxide single crystals are oriented vertically to a surface of a positive electrode current collector is provided. The lithium-containing composite oxide particles are mixed with graphene oxide and then pressure is applied thereto, whereby the rectangular parallelepiped or substantially rectangular parallelepiped particles are likely to slip. In addition, in the case where the rectangular parallelepiped or substantially rectangular parallelepiped particles whose length in the b-axis direction is shorter than those in the a-axis direction and the c-axis direction are used, when pressure is applied in one direction, the b-axes can be oriented in the one direction.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: April 3, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takuya Miwa, Nobuhiro Inoue, Kuniharu Nomoto, Junpei Momo