Patents by Inventor Kunihiko Bessho

Kunihiko Bessho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9620768
    Abstract: A negative electrode 1 for lithium secondary batteries, which can increase the charge/discharge capacity of a lithium secondary battery, includes a negative electrode current collector, a negative electrode active material layer, and a lithium layer. The negative electrode active material layer is disposed on regions and of the respective surfaces and of the negative electrode current collector. The lithium layer is disposed on uncovered regions and, which are regions of the respective surfaces and of the negative electrode current collector on which the negative electrode active material layer is not disposed. The lithium layer includes lithium.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: April 11, 2017
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Yasutaka Kogetsu, Kunihiko Bessho, Takashi Shimada
  • Publication number: 20150147656
    Abstract: A negative electrode 1 for lithium secondary batteries, which can increase the charge/discharge capacity of a lithium secondary battery, includes a negative electrode current collector, a negative electrode active material layer, and a lithium layer. The negative electrode active material layer is disposed on regions and of the respective surfaces and of the negative electrode current collector. The lithium layer is disposed on uncovered regions and, which are regions of the respective surfaces and of the negative electrode current collector on which the negative electrode active material layer is not disposed. The lithium layer includes lithium.
    Type: Application
    Filed: May 20, 2013
    Publication date: May 28, 2015
    Applicant: SANYO Electric Co., Ltd.
    Inventors: Yasutaka Kogetsu, Kunihiko Bessho, Takashi Shimada
  • Patent number: 8877291
    Abstract: The present invention provides a thin film manufacturing method which realizes stable, highly-efficient film formation using a nozzle-type evaporation source while avoiding unnecessary scattering and deposition of a film formation material before the start of the film formation. Used is a film forming apparatus including: an evaporation chamber 16; a film forming chamber 17 in which a substrate 21 is provided; an evaporation source 19 holding a film formation material 15 and including an opening surface 14; a moving mechanism 35 configured to cause the evaporation source 19 to move; and a conductance variable structure 34. The film forming chamber 17 and the evaporation chamber 16 are evacuated. In a state where the differential pressure between these chambers can be secured by the conductance variable structure 34, the nonreactive gas is introduced to the evaporation chamber 16 to adjust the pressure in the evaporation chamber 16 to predetermined pressure or more.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: November 4, 2014
    Assignee: Panasonic Corporation
    Inventors: Kazuyoshi Honda, Kunihiko Bessho, Takashi Shimada
  • Patent number: 8865258
    Abstract: The present invention provides a thin film manufacturing method which realizes stable, highly-efficient film formation using a nozzle-type evaporation source while avoiding unnecessary scattering and deposition of a film formation material after the termination of the film formation. Used is a film forming apparatus including: an evaporation chamber 16; a film forming chamber 17 in which a substrate 21 is provided; an evaporation source 19 holding a film formation material 15 and including an opening surface 14; a moving mechanism 35 configured to cause the evaporation source 19 to move; and a conductance variable structure 34.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: October 21, 2014
    Assignee: Panasonic Corporation
    Inventors: Kazuyoshi Honda, Kunihiko Bessho, Takashi Shimada
  • Patent number: 8668895
    Abstract: In a purifying method for metal grade silicon, metal grade silicon with a silicon concentration not less than 98 wt % and not more than 99.9 wt % is prepared. The metal grade silicon contains aluminum not less than 1000 ppm and not more than 10000 ppm by weight. The metal grade silicon is heated at a temperature not less than 1500° C. and not more than 1600° C. in an inert atmosphere under pressure not less than 100 Pa and not more than 1000 Pa, and maintained at the temperature in the atmosphere for a predetermined period.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: March 11, 2014
    Assignee: Panasonic Corporation
    Inventors: Yuma Kamiyama, Kazuyoshi Honda, Yasuharu Shinokawa, Hiromasa Yagi, Tomofumi Yanagi, Kunihiko Bessho
  • Publication number: 20140050850
    Abstract: A vacuum apparatus (100) includes: a vacuum chamber (11); a heat source (12) disposed inside the vacuum chamber (11); a cooling device (20) that cools the heat source (12) by circulation of a cooling gas; a gas feed line (1) connected to the cooling device (20) and extending outside the vacuum chamber (11); a cooling gas feeder (14) that feeds the cooling gas to the cooling device (20) through the gas feed line (1) when the heat source (12) is to be cooled; and a vacuum pump (13) that evacuates the cooling device (20) when the heat source (12) is to be used.
    Type: Application
    Filed: September 27, 2012
    Publication date: February 20, 2014
    Inventors: Kazuyoshi Honda, Sadayuki Okazaki, Kunihiko Bessho, Takashi Shimada
  • Patent number: 8486549
    Abstract: A lithium ion secondary battery including: a positive electrode current collector; a positive electrode active material layer that is provided in contact with the positive electrode current collector; a separator layer that is provided on a side of the positive electrode active material layer on which the positive electrode current collector is not provided; a negative electrode active material layer that is provided on a side of the separator layer on which the positive electrode active material layer is not provided, that primarily contains silicon or tin, and that includes a opposing portion opposing the positive electrode active material layer and a non-opposing portion not opposing the positive electrode active material layer, the opposing portion and the non-opposing portion containing lithium produced by a thin film-forming method; and a negative electrode current collector that is provided on a side of the negative electrode active material layer on which the separator layer is not provided.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: July 16, 2013
    Assignee: Panasonic Corporation
    Inventors: Kazuyoshi Honda, Toshitada Sato, Daisuke Suetsugu, Katsumi Kashiwagi, Kunihiko Bessho
  • Patent number: 8202642
    Abstract: An object of the invention is to provide a current collector for a non-aqueous secondary battery in which the strength of the current collector is sufficient in forming an electrode plate and an active material can be efficiently disposed on the protrusions of the current collector, and to provide an electrode plate for a non-aqueous secondary battery and a non-aqueous secondary battery using the same. The invention relates to a current collector for a non-aqueous secondary battery, including a metal foil for carrying at least a positive electrode active material or negative electrode active material. Protrusions are formed in a predetermined arrangement pattern on at least one face of the metal foil and at least tops of the protrusions are not compressed.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: June 19, 2012
    Assignee: Panasonic Corporation
    Inventors: Masanori Sumihara, Kunihiko Bessho, Takuhiro Nishimura
  • Publication number: 20120148746
    Abstract: The present invention provides a thin film manufacturing method which realizes stable, highly-efficient film formation using a nozzle-type evaporation source while avoiding unnecessary scattering and deposition of a film formation material after the termination of the film formation. Used is a film forming apparatus including: an evaporation chamber 16; a film forming chamber 17 in which a substrate 21 is provided; an evaporation source 19 holding a film formation material 15 and including an opening surface 14; a moving mechanism 35 configured to cause the evaporation source 19 to move; and a conductance variable structure 34.
    Type: Application
    Filed: June 1, 2011
    Publication date: June 14, 2012
    Inventors: Kazuyoshi Honda, Kunihiko Bessho, Takashi Shimada
  • Publication number: 20120141677
    Abstract: The present invention provides a thin film manufacturing method which realizes stable, highly-efficient film formation using a nozzle-type evaporation source while avoiding unnecessary scattering and deposition of a film formation material before the start of the film formation. Used is a film forming apparatus including: an evaporation chamber 16; a film forming chamber 17 in which a substrate 21 is provided; an evaporation source 19 holding a film formation material 15 and including an opening surface 14; a moving mechanism 35 configured to cause the evaporation source 19 to move; and a conductance variable structure 34. The film forming chamber 17 and the evaporation chamber 16 are evacuated. In a state where the differential pressure between these chambers can be secured by the conductance variable structure 34, the nonreactive gas is introduced to the evaporation chamber 16 to adjust the pressure in the evaporation chamber 16 to predetermined pressure or more.
    Type: Application
    Filed: June 1, 2011
    Publication date: June 7, 2012
    Inventors: Kazuyoshi Honda, Kunihiko Bessho, Takashi Shimada
  • Publication number: 20110111277
    Abstract: A current collector includes a metal foil and protrusions formed on one face or both faces of the metal foil in a predetermined arrangement. The protrusions are substantially rhombic and aligned in a zigzag. Also, both end portions of each protrusion in each of two orthogonal axial directions protrude outward. Middle portions between the end portions are recessed inward. When columnar blocks of an active material are formed on the protrusions to form an active material layer, the gaps between the protrusions can be increased at portions where the interval between the protrusions is the smallest. As a result, internal stress of the active material layer created by charge/discharge of the battery can be alleviated, and the battery life can be increased.
    Type: Application
    Filed: July 21, 2009
    Publication date: May 12, 2011
    Inventors: Kunihiko Bessho, Daisuke Suetsugu, Seiichi Kato
  • Publication number: 20100196623
    Abstract: The present invention provides a film forming method and a film forming apparatus each of which is capable of forming films at low cost. The film forming method of the present invention includes the steps of (i) melting a solid material 51 of a thin film to prepare a melted liquid, solidifying the melted liquid 51a to form a rod-shaped body 51b, and pulling out the rod-shaped body 51b, (ii) melting and supplying a part of the rod-shaped body 51b to a melted liquid (evaporation source) 51d, and (iii) using the melted liquid (evaporation source) 51d to form the thin film. The steps (i), (ii), and (iii) are carried out in vacuum.
    Type: Application
    Filed: September 9, 2008
    Publication date: August 5, 2010
    Inventors: Kazuyoshi Honda, Yuma Kamiyama, Kunihiko Bessho, Tomofumi Yanagi, Yasuharu Shinokawa, Toshitada Sato
  • Publication number: 20100167112
    Abstract: A lithium ion secondary battery including: a positive electrode current collector; a positive electrode active material layer that is provided in contact with the positive electrode current collector; a separator layer that is provided on a side of the positive electrode active material layer on which the positive electrode current collector is not provided; a negative electrode active material layer that is provided on a side of the separator layer on which the positive electrode active material layer is not provided, that primarily contains silicon or tin, and that includes a opposing portion opposing the positive electrode active material layer and a non-opposing portion not opposing the positive electrode active material layer, the opposing portion and the non-opposing portion containing lithium produced by a thin film-forming method; and a negative electrode current collector that is provided on a side of the negative electrode active material layer on which the separator layer is not provided.
    Type: Application
    Filed: July 18, 2008
    Publication date: July 1, 2010
    Inventors: Kazuyoshi Honda, Toshitada Sato, Daisuke Suetsugu, Katsumi Kashiwagi, Kunihiko Bessho
  • Publication number: 20100167111
    Abstract: An object of the invention is to provide a current collector for a non-aqueous secondary battery in which the strength of the current collector is sufficient in forming an electrode plate and an active material can be efficiently disposed on the protrusions of the current collector, and to provide an electrode plate for a non-aqueous secondary battery and a non-aqueous secondary battery using the same. The invention relates to a current collector for a non-aqueous secondary battery, including a metal foil for carrying at least a positive electrode active material or negative electrode active material. Protrusions are formed in a predetermined arrangement pattern on at least one face of the metal foil and at least tops of the protrusions are not compressed.
    Type: Application
    Filed: November 15, 2007
    Publication date: July 1, 2010
    Inventors: Masanori Sumihara, Kunihiko Bessho, Takuhiro Nishimura
  • Publication number: 20090280049
    Abstract: In a purifying method for metal grade silicon, metal grade silicon with a silicon concentration not less than 98 wt % and not more than 99.9 wt % is prepared. The metal grade silicon contains aluminum not less than 1000 ppm and not more than 10000 ppm by weight. The metal grade silicon is heated at a temperature not less than 1500° C. and not more than 1600° C. in an inert atmosphere under pressure not less than 100 Pa and not more than 1000 Pa, and maintained at the temperature in the atmosphere for a predetermined period.
    Type: Application
    Filed: June 24, 2008
    Publication date: November 12, 2009
    Applicant: Panasonic Corporation
    Inventors: Yuma Kamiyama, Kazuyoshi Honda, Yasuharu Shinokawa, Hiromasa Yagi, Tomofumi Yanagi, Kunihiko Bessho
  • Publication number: 20080199780
    Abstract: A method for manufacturing an electrode for an electrochemical element capable of absorbing and releasing lithium ions includes a lithiation treatment method for compensating an irreversible capacity of the electrode for an electrochemical element. In the lithiation treatment method, lithium is provided to the electrode by allowing a lithium vapor to flow with a movement route of the lithium vapor limited.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 21, 2008
    Inventors: Hiroshi HAYATA, Toshitada Sato, Kunihiko Bessho, Kazuyoshi Honda
  • Patent number: 7348098
    Abstract: A power generation element is stored in an inner space formed by combining a battery case (2) and a seal case (3) formed as a half-shell body with a rectangular plane shape such that the individual openings are placed opposing to each other with a gasket (4) interposed therebetween, and the gasket (4) is pressed between the open end of the battery case (2) and a step (35) of the seal case (3) for sealing during caulking. Because recesses (36) are formed on the individual peripheral edges of a bottom surface (31) of the seal case (3), the strength of straight parts of a seal-case side-peripheral surface (32) of the seal case (3) increases against a seal pressure during caulking, and a decrease of seal capability caused by the straight parts bulging toward the outside during sealing is prevented.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: March 25, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tetsuya Hayashi, Makoto Nakanishi, Kunihiko Bessho
  • Patent number: 6893773
    Abstract: A power generation element is stored in an inner space formed by combining a battery case (2) and a seal case (3) formed as a half-shell body with a rectangular plane shape such that the individual openings are placed opposing to each other with a gasket (4) interposed therebetween, and the gasket (4) is pressed between the open end of the battery case (2) and a step (35) of the seal case (3) for sealing during caulking. Because recesses (36) are formed on the individual peripheral edges of a bottom surface (31) of the seal case (3), the strength of straight parts of a seal-case side-peripheral surface (32) of the seal case (3) increases against a seal pressure during caulking, and a decrease of seal capability caused by the straight parts bulging toward the outside during sealing is prevented.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: May 17, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tetsuya Hayashi, Makoto Nakanishi, Kunihiko Bessho
  • Publication number: 20050031952
    Abstract: A power generation element is stored in an inner space formed by combining a battery case (2) and a seal case (3) formed as a half-shell body with a rectangular plane shape such that the individual openings are placed opposing to each other with a gasket (4) interposed therebetween, and the gasket (4) is pressed between the open end of the battery case (2) and a step (35) of the seal case (3) for sealing during caulking. Because recesses (36) are formed on the individual peripheral edges of a bottom surface (31) of the seal case (3), the strength of straight parts of a seal-case side-peripheral surface (32) of the seal case (3) increases against a seal pressure during caulking, and a decrease of seal capability caused by the straight parts bulging toward the outside during sealing is prevented.
    Type: Application
    Filed: September 8, 2004
    Publication date: February 10, 2005
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tetsuya Hayashi, Makoto Nakanishi, Kunihiko Bessho
  • Publication number: 20020182494
    Abstract: A power generation element is stored in an inner space formed by combining a battery case (2) and a seal case (3) formed as a half-shell body with a rectangular plane shape such that the individual openings are placed opposing to each other with a gasket (4) interposed therebetween, and the gasket (4) is pressed between the open end of the battery case (2) and a step (35) of the seal case (3) for sealing during caulking. Because recesses (36) are formed on the individual peripheral edges of a bottom surface (31) of the seal case (3), the strength of straight parts of a seal-case side-peripheral surface (32) of the seal case (3) increases against a seal pressure during caulking, and a decrease of seal capability caused by the straight parts bulging toward the outside during sealing is prevented.
    Type: Application
    Filed: June 13, 2002
    Publication date: December 5, 2002
    Inventors: Tetsuya Hayashi, Makoto Nakanishi, Kunihiko Bessho