Patents by Inventor Kunimitsu Kataoka

Kunimitsu Kataoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170222258
    Abstract: Provided is a high-density lithium-containing garnet crystal body. The lithium-containing garnet crystal body has a relative density of 99% or more, belongs to a tetragonal system, and has a garnet-related type structure. A method of producing a Li7La3Zr2O12 crystal, which is one example of this lithium-containing garnet crystal body, includes melting a portion of a rod-like raw material composed of polycrystalline Li7La3Zr2O12 belonging to a tetragonal system while rotating it on a plane perpendicular to the longer direction and moving the melted portion in the longer direction. The moving rate of the melted portion is preferably 8 mm/h or more but not more than 19 mm/h. The rotational speed of the raw material is preferably 30 rpm or more but not more than 60 rpm. By increasing the moving rate of the melted portion, decomposition of the raw material due to evaporation of lithium can be prevented and by increasing the rotational speed of the raw material, air bubbles can be removed.
    Type: Application
    Filed: July 30, 2015
    Publication date: August 3, 2017
    Inventors: Kunimitsu KATAOKA, Junji AKIMOTO
  • Publication number: 20160344025
    Abstract: Provided is a titanate compound capable of further increasing the capacity of a power storage device when used as an electrode active material thereof. The titanate compound according to the present invention includes at least 60%, based on the number thereof, of particles having an anisotropic shape and a specific surface area of 10-30 m2/g as measured by a nitrogen adsorption BET one-point method, and having a long-axis diameter (L) in the range of 0.1<L?0.9 ?m as measured by electron microscopy.
    Type: Application
    Filed: January 23, 2015
    Publication date: November 24, 2016
    Inventors: Hideaki NAGAI, Kunimitsu KATAOKA, Junji AKIMOTO, Yoshimasa KUMASHIRO, Tomoyuki SOTOKAWA
  • Publication number: 20160194214
    Abstract: Provided are: an alkali metal titanium oxide having a uniform composition and that is such that there are no residual by-products having a different composition or unreacted starting materials; and a method for producing a titanium oxide and proton exchange body obtained by processing the alkali metal titanium oxide. The method produces an alkali metal titanium oxide by firing the result of impregnating the surface and inside of pores of porous titanium compound particles with an aqueous solution of an alkali metal-containing component. The alkali metal titanium oxide is subjected to proton exchange, and with the proton exchange body of the alkali metal titanium oxide as the starting material, the titanium oxide is produced through a heat processing step.
    Type: Application
    Filed: August 14, 2014
    Publication date: July 7, 2016
    Inventors: Hideaki NAGAI, Junji AKIMOTO, Kunimitsu KATAOKA, Yoshimasa KUMASHIRO, Tomoyuki SOTOKAWA, Nobuharu KOSHIBA
  • Publication number: 20160190574
    Abstract: Provided are an alkali metal titanium oxide and titanium oxide that have a novel form and are industrially advantageous. The alkali metal titanium oxide is obtained by firing the result of impregnating the surface and interior of pores of porous titanium compound particles with an aqueous solution of an alkali metal-containing component, and has the form of secondary particles resulting from the aggregation of primary particles having an anisotropic structure. The titanium oxide is obtained using the alkali metal titanium oxide as a starting material. The secondary particles can further assume a clumped structure, have a suitable size, and are easily handled, and so are industrially advantageous. In particular, the H2Ti12O25 of the present invention is an electrode material that is for a lithium secondary battery, has a high capacity and a superior initial charging/discharging rate and cycling characteristics, and has an extremely high practical value.
    Type: Application
    Filed: August 14, 2014
    Publication date: June 30, 2016
    Inventors: Hideaki NAGAI, Junji AKIMOTO, Kunimitsu KATAOKA, Yoshimasa KUMASHIRO, Tomoyuki SOTOKAWA, Nobuharu KOSHIBA
  • Patent number: 8518367
    Abstract: A method of producing a titanium oxide, including the steps of: ion-exchanging a sodium titanium oxide Na2Ti6O13, to synthesize Li2Ti6O13; subjecting Li2Ti6O13 to proton exchange, to give H2Ti6O13; and subjecting H2Ti6O13, as a starting material, to a heat treatment.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: August 27, 2013
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Junji Akimoto, Kunimitsu Kataoka, Akemi Kawashima, Hiroshi Hayakawa
  • Publication number: 20110223098
    Abstract: A method of producing a titanium oxide, including the steps of: ion-exchanging a sodium titanium oxide Na2Ti6O13, to synthesize Li2Ti6O13; subjecting Li2Ti6O13 to proton exchange, to give H2Ti6O13; and subjecting H2Ti6O13, as a starting material, to a heat treatment.
    Type: Application
    Filed: November 12, 2009
    Publication date: September 15, 2011
    Inventors: Junji Akimoto, Kunimitsu Kataoka, Akemi Kawashima, Hiroshi Hayakawa