Patents by Inventor Kunio Matsuzaki

Kunio Matsuzaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11065135
    Abstract: Provided is a thin, narrow tube for use in a biodegradable medical device formed from a round tube made of a magnesium material as the base material, in which a desired outer diameter and an inner diameter are provided with good precision over the entire region in a longitudinal direction and a circumferential direction, and the length of biodegradation time can be controlled without changing a material composition. The thin, narrow tube is a thin, narrow tube of a biodegradable medical device, in which the thin, narrow tube is a round tube made of crystals containing magnesium (Mg) having a hexagonal crystal structure, and when the crystals forming the round tube are viewed in a round tube axis direction of the round tube, a hexagonal basal plane (0001) is oriented at a predetermined inclination angle with respect to a circumferential direction perpendicular to a radial direction (a direction from an inner surface to an outer surface) of the round tube.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: July 20, 2021
    Inventors: Kotaro Hanada, Kunio Matsuzaki
  • Publication number: 20190274851
    Abstract: Provided is a thin, narrow tube for use in a biodegradable medical device formed from a round tube made of a magnesium material as the base material, in which a desired outer diameter and an inner diameter are provided with good precision over the entire region in a longitudinal direction and a circumferential direction, and the length of biodegradation time can be controlled without changing a material composition. The thin, narrow tube is a thin, narrow tube of a biodegradable medical device, in which the thin, narrow tube is a round tube made of crystals containing magnesium (Mg) having a hexagonal crystal structure, and when the crystals forming the round tube are viewed in a round tube axis direction of the round tube, a hexagonal basal plane (0001) is oriented at a predetermined inclination angle with respect to a circumferential direction perpendicular to a radial direction (a direction from an inner surface to an outer surface) of the round tube.
    Type: Application
    Filed: March 19, 2019
    Publication date: September 12, 2019
    Inventors: Kotaro HANADA, Kunio MATSUZAKI
  • Patent number: 10271971
    Abstract: Provided is a thin, narrow tube for use in a biodegradable medical device formed from a round tube made of a magnesium material as the base material, in which a desired outer diameter and an inner diameter are provided with good precision over the entire region in a longitudinal direction and a circumferential direction, and the length of biodegradation time can be controlled without changing a material composition. The thin, narrow tube is a thin, narrow tube of a biodegradable medical device, in which the thin, narrow tube is a round tube made of crystals containing magnesium (Mg) having a hexagonal crystal structure, and when the crystals forming the round tube are viewed in a round tube axis direction of the round tube, a hexagonal basal plane (0001) is oriented at a predetermined inclination angle with respect to a circumferential direction perpendicular to a radial direction (a direction from an inner surface to an outer surface) of the round tube.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: April 30, 2019
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Kotaro Hanada, Kunio Matsuzaki
  • Publication number: 20150297370
    Abstract: Provided is a thin, narrow tube for use in a biodegradable medical device formed from a round tube made of a magnesium material as the base material, in which a desired outer diameter and an inner diameter are provided with good precision over the entire region in a longitudinal direction and a circumferential direction, and the length of biodegradation time can be controlled without changing a material composition. The thin, narrow tube is a thin, narrow tube of a biodegradable medical device, in which the thin, narrow tube is a round tube made of crystals containing magnesium (Mg) having a hexagonal crystal structure, and when the crystals forming the round tube are viewed in a round tube axis direction of the round tube, a hexagonal basal plane (0001) is oriented at a predetermined inclination angle with respect to a circumferential direction perpendicular to a radial direction (a direction from an inner surface to an outer surface) of the round tube.
    Type: Application
    Filed: August 2, 2013
    Publication date: October 22, 2015
    Applicant: National Institute of Advanced Industrial Science and Technology
    Inventors: Kotaro HANADA, Kunio MATSUZAKI
  • Patent number: 7481968
    Abstract: A novel method is disclosed for the preparation of a sintered porous body of a metallic or ceramic powder having a closed cell texture and a porosity as high as 95% or higher. The method comprises the steps of: preparing a foamable aqueous slurried composition containing a powder of the metallic or ceramic material, a blowing agent and a binder resin which is a water-soluble polymer capable of becoming gelled; subjecting the slurried composition to gelation of the binder resin; subjecting the gelled mass of the composition to foaming by gas-evolution from the blowing agent; and heating the thus gelled and foamed body of the composition to effect drying and sintering of the particles of the metallic or ceramic powder.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: January 27, 2009
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Toru Shimizu, Kanichi Hatsukano, Kotaro Hanada, Kunio Matsuzaki
  • Publication number: 20050207928
    Abstract: A novel method is disclosed for the preparation of a sintered porous body of a metallic or ceramic powder having a closed cell texture and a porosity as high as 95% or higher. The method comprises the steps of: preparing a foamable aqueous slurried composition containing a powder of the metallic or ceramic material, a blowing agent and a binder resin which is a water-soluble polymer capable of becoming gelled; subjecting the slurried composition to gelation of the binder resin; subjecting the gelled mass of the composition to foaming by gas-evolution from the blowing agent; and heating the thus gelled and foamed body of the composition to effect drying and sintering of the particles of the metallic or ceramic powder.
    Type: Application
    Filed: March 10, 2005
    Publication date: September 22, 2005
    Inventors: Toru Shimizu, Kanichi Hatsukano, Kotaro Hanada, Kunio Matsuzaki
  • Patent number: 5230912
    Abstract: A method of producing milk-fermented food, wherein a bifidobacteria or a lactic acid bacteria or a combination of these two bacteria are inoculated into and cultured in a culture medium composed mainly of milk, and an isolated soybean protein or a yeast extract or a combination of these substances are added to the culture medium or a culture obtained by cultivation of the bacteria. The bifidobacteria is one or two species selected from Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium bifidum, or Bifidobacterium infantis.
    Type: Grant
    Filed: November 23, 1990
    Date of Patent: July 27, 1993
    Assignee: Kabushiki Kaisha Yakult Honsha
    Inventors: Masako Yajima, Shinji Hashimoto, Taketsugu Saita, Kunio Matsuzaki
  • Patent number: 5100869
    Abstract: A metal oxide-type superconductive material is produced by a process which comprises a first step of subjecting a powder raw material containing given proportions of metal elements to be contained in said metal oxide-type superconductive material, to mechanical grinding and alloying simultaneously to obtain an alloy powder and a second step of heat-treating the alloy powder in an oxygen-containing gas atmosphere to obtain a metal oxide.The superconductive material obtained has a high density, a low porosity, a high strength and a high critical current density.
    Type: Grant
    Filed: March 10, 1989
    Date of Patent: March 31, 1992
    Assignees: Tsuyoshi Masumoto, Hoya Corporation
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Kunio Matsuzaki, Keiji Moroishi
  • Patent number: 4944183
    Abstract: A level gauge and measurement method are provided using a sensing element comprising a superconductive alloy represented by the formula:Mo.sub.a Ru.sub.b Z.sub.cwherein Z is phosphorous, boron, or a mixture of phosphorous and boron,b has a value of about 20 to about 40,c has a value of about 10 to about 30, anda+b+c=100.The sensing element has a superconductivity critical temperature of at least 4.2K and is useful for measuring the level of liquid helium independently of pressure fluctuations in the reservoir vessel.
    Type: Grant
    Filed: November 29, 1988
    Date of Patent: July 31, 1990
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Kunio Matsuzaki, Masami Ishii, Ryohei Yabuno, Tetsuo Oka