Patents by Inventor Kunpeng Feng

Kunpeng Feng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10481325
    Abstract: A fabrication method of a multi-core fiber Bragg grating (FBG) probe for measuring structures of a micro part based on the capillary self-assembly technique, wherein the diameter of the fiber (6) inscribed with FBG is reduced using a mechanical method or an etch method by the hydrofluoric acid; the fibers (6) inscribed with FBG, whose diameter has been reduced, are inserted into a tube (7) through its terminal with an inner taper angle; the FBG terminals of these fibers (6) are immersed into the UV adhesive (10) of a low viscosity and the UV adhesive (10) is raised in the gaps between the fibers (6); or the UV adhesive is dropped on these fibers (6) and the capillary bridge between the fibers (6) is formed; a most compact structure of the fiber bundle is formed as a result of the capillary self-assembly; the fiber bundle is cured using a UV light and the multi-core FBG (11) is therefore formed; the terminal of the multi-core FBG (11) is polished with an optic fiber polishing machine and then a spherical tip i
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: November 19, 2019
    Assignee: HARBIN INSTITUTE OF TECHNOLOGY
    Inventors: Jiwen Cui, Kunpeng Feng, Hong Dang, Shiyuan Zhao, Junying Li, Jiubin Tan
  • Patent number: 10082383
    Abstract: A method and equipment for dimensional measurement of a micro part based on fiber laser with multi-core fiber Bragg grating probe are provided, wherein a multi-core FBG probe with FBGs (12,29) inscribed in the core or cores out of the center of the multi-core fiber is used to transform the two-dimensional or three-dimensional contact displacement into the spectrum shifts with a high sensitivity. At the meantime, the FBGs in the multi-core FBG probe (12,29) work as the wavelength selection device of the fiber laser, the wavelength of the fiber laser will change thereby. So the contact displacement is finally converted into the wavelength change of the fiber laser. The method and equipment have the advantage of high sensitivity, low probing force, compact structure, high inspecting aspect ratio and immunity to environment interference.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: September 25, 2018
    Assignee: HARBIN INSTITUTE OF TECHNOLOGY
    Inventors: Jiwen Cui, Shiyuan Zhao, Kunpeng Feng, Hong Dang, Junying Li, Jiubin Tan
  • Patent number: 10060723
    Abstract: A method and equipment based on multi-core fiber Bragg grating (FBG) probe for measuring structures of a micro part are provided. The provided method relates to how to accomplish measuring structures of a micro part by transforming two or three-dimensional contact displacements into spectrum shifts of the multi-core FBG probe, and to reconstruct the structure geometry of a micro part. The provided equipment can be used to bring the spherical tip of the multi-core FBG probe into contact with a micro part, to determine coordinates of contact points, and to reconstruct the structure geometry of a micro part. The provided method and equipment feature high sensitivity, low probing force, high inspecting aspect ratio and immunity to environment interference.
    Type: Grant
    Filed: December 25, 2014
    Date of Patent: August 28, 2018
    Assignee: HARBIN INSTITUTE OF TECHNOLOGY
    Inventors: Jiwen Cui, Kunpeng Feng, Junying Li, Jiubin Tan
  • Publication number: 20170363417
    Abstract: A method and equipment for dimensional measurement of a micro part based on fiber laser with multi-core fiber Bragg grating probe are provided, wherein a multi-core FBG probe with FBGs (12,29) inscribed in the core or cores out of the center of the multi-core fiber is used to transform the two-dimensional or three-dimensional contact displacement into the spectrum shifts with a high sensitivity. At the meantime, the FBGs in the multi-core FBG probe (12,29) work as the wavelength selection device of the fiber laser, the wavelength of the fiber laser will change thereby. So the contact displacement is finally converted into the wavelength change of the fiber laser. The method and equipment have the advantage of high sensitivity, low probing force, compact structure, high inspecting aspect ratio and immunity to environment interference.
    Type: Application
    Filed: March 4, 2016
    Publication date: December 21, 2017
    Applicant: HARBIN INSTITUTE OF TECHNOLOGY
    Inventors: Jiwen CUI, Shiyuan ZHAO, Kunpeng FENG, Hong DANG, Junying LI, Jiubin TAN
  • Publication number: 20170276868
    Abstract: A fabrication method of the multi-core fiber Bragg grating (FBG) probe for measuring structures of a micro part based on the capillary self-assembly technique, wherein the diameter of the fiber (6) inscribed with FBG is reduced using a mechanical method or an etch method by the hydrofluoric acid; the fibers (6) inscribed with FBG, whose diameter has been reduced, are inserted into a tube (7) through its terminal with an inner taper angle; the FBG terminals of these fibers (6) are immersed into the UV adhesive (10) of a low viscosity and the UV adhesive (10) is raised in the gaps between the fibers (6); or the UV adhesive is dropped on the these fibers (6) and the capillary bridge between the fibers (6) is formed; a most compact structure of the fiber bundle is formed as a result of the capillary self-assembly; the fiber bundle is cured using a UV light and the multi-core FBG (11) is therefore formed; the terminal of the multi-core FBG (11) is polished with an optic fiber polishing machine and then a spherical
    Type: Application
    Filed: March 2, 2016
    Publication date: September 28, 2017
    Applicant: HARBIN INSTITUTE OF TECHNOLOGY
    Inventors: Jiwen CUI, Kunpeng FENG, Hong DANG, Shiyuan ZHAO, Junying LI, Jiubin TAN
  • Patent number: 9618331
    Abstract: A method and equipment based on detecting the polarization property of a polarization maintaining fiber (PMF) probe for measuring structures of a micro part are provided. The provided method relates to how to accomplish measuring structures of a micro part by transforming two or three-dimensional contact displacements into polarization property changes of the PMF probe, and how to reconstruct the structure geometry of a micro part. The provided equipment can be used to bring the spherical tip of the PMF probe into contact with a micro part, to determine coordinates of contact points, and to reconstruct the structure geometry of a micro part. The provided method and equipment feature high sensitivity, low probing force, high inspecting aspect ratio and immunity to environment interference.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: April 11, 2017
    Assignee: HARBIN INSTITUTE OF TECHNOLOGY
    Inventors: Jiwen Cui, Junying Li, Kunpeng Feng, Jiubin Tan
  • Publication number: 20160334203
    Abstract: A method and equipment based on multi-core fiber Bragg grating (FBG) probe for measuring structures of a micro part are provided. The provided method relates to how to accomplish measuring structures of a micro part by transforming two or three-dimensional contact displacements into spectrum shifts of the multi-core FBG probe, and to reconstruct the structure geometry of a micro part. The provided equipment can be used to bring the spherical tip of the multi-core FBG probe into contact with a micro part, to determine coordinates of contact points, and to reconstruct the structure geometry of a micro part. The provided method and equipment feature high sensitivity, low probing force, high inspecting aspect ratio and immunity to environment interference.
    Type: Application
    Filed: December 25, 2014
    Publication date: November 17, 2016
    Applicant: Harbin Institute of Technology
    Inventors: JIWEN CUI, KUNPENG FENG, JUNYING LI, JIUBIN TAN
  • Publication number: 20160305764
    Abstract: A method and equipment based on detecting the polarization property of a polarization maintaining fiber (PMF) probe for measuring structures of a micro part are provided. The provided method relates to how to accomplish measuring structures of a micro part by transforming two or three-dimensional contact displacements into polarization property changes of the PMF probe, and how to reconstruct the structure geometry of a micro part. The provided equipment can be used to bring the spherical tip of the PMF probe into contact with a micro part, to determine coordinates of contact points, and to reconstruct the structure geometry of a micro part. The provided method and equipment feature high sensitivity, low probing force, high inspecting aspect ratio and immunity to environment interference.
    Type: Application
    Filed: December 31, 2014
    Publication date: October 20, 2016
    Inventors: Jiwen Cui, Junying Li, Kunpeng Feng, Jiubin Tan