Patents by Inventor Kunsheng Wu

Kunsheng Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10604769
    Abstract: The invention provides a transgenic Gossypium hirsutum event MON 88702, plants, plant cells, seeds, plant parts, progeny plants, and commodity products comprising event MON 88702. The invention also provides polynucleotides specific for event MON 88702, plants, plant cells, seeds, plant parts, progeny plants, and commodity products comprising polynucleotides for event MON 88702. The invention also provides methods related to event MON 88702.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: March 31, 2020
    Assignee: Monsanto Technology LLC
    Inventors: Waseem Akbar, Robert S. Brown, Wen C. Burns, Thomas L. Clark, Stanislaw Flasinski, Anilkumar Gowda, Aihong Pan, Xiaohong Shi, Jason W. Stelzer, Kunsheng Wu
  • Patent number: 10604765
    Abstract: The present invention provides a transgenic soybean comprising event MON87712 that exhibits increased yield. The invention also provides cells, plant parts, seeds, plants, commodity products related to the event, and DNA molecules that are unique to the event and were created by the insertion of transgenic DNA into the genome of a soybean plant. The invention further provides methods for detecting the presence of said soybean event nucleotide sequences in a sample, probes and primers for use in detecting nucleotide sequences that are diagnostic for the presence of said soybean event.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: March 31, 2020
    Assignee: Monsanto Technology LLC
    Inventors: Robert H. Cole, John A. Korte, John R. LeDeaux, Melissa Compton Spears, Kunsheng Wu
  • Patent number: 10584391
    Abstract: The invention provides a transgenic Glycine max event MON87751, plants, plant cells, seeds, plant parts, progeny plants, and commodity products comprising event MON87751. The invention also provides polynucleotides specific for event MON87751, plants, plant cells, seeds, plant parts, and commodity products comprising polynucleotides for event MON87751. The invention also provides methods related to event MON87751.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: March 10, 2020
    Assignee: Monsanto Technology LLC
    Inventors: Kim A. Beazley, Wen C. Burns, Robert H. Cole, II, Ted C. MacRae, John A. Miklos, Lisa G. Ruschke, Kairong Tian, Liping Wei, Kunsheng Wu
  • Patent number: 10494644
    Abstract: The present invention relates to the field of plant breeding and disease resistance. More specifically, the invention includes a method for breeding soybean plants containing quantitative trail loci (QTL) for resistance the Phytophthora root rot (PRR) caused by Phytophthora sojae. The invention further includes the use of molecular markers in the introgression of PRR resistance QTL into soybean plants.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: December 3, 2019
    Assignee: Monsanto Technology LLC
    Inventors: James Behm, Kunsheng Wu, John Tamulonis, Vergel Concibido, Jennifer L. Yates
  • Publication number: 20190323028
    Abstract: The invention provides corn event MON 87411, and plants, plant cells, seeds, plant parts, and commodity products comprising event MON 87411. The invention also provides polynucleotides specific for event MON 87411 and plants, plant cells, seeds, plant parts, and commodity products comprising polynucleotides specific for event MON 87411. The invention also provides methods related to event MON 87411.
    Type: Application
    Filed: May 6, 2019
    Publication date: October 24, 2019
    Inventors: Wen C. Burns, Catherine A. Chay, Cheryl L. Cloninger, Mingqi Deng, Stanislaw Flasinski, Kunsheng Wu
  • Publication number: 20190300898
    Abstract: The invention provides a transgenic soybean event MON 87708 plant and plants, plant cells, seeds, plant parts, and commodity products derived from event MON 87708. The invention also provides polynucleotides specific for event MON 87708 and plants, plant cells, seeds, plant parts, and commodity products comprising polynucleotides specific for event MON 87708. The invention also provides methods related to event MON 87708.
    Type: Application
    Filed: April 5, 2019
    Publication date: October 3, 2019
    Inventors: Ronald J. Brinker, Wen C. Burns, Paul C.C. Feng, Anju Gupta, Sio-Wai Hoi, Marianne Malven, Kunsheng Wu
  • Publication number: 20190185876
    Abstract: The present invention provides breeding methods and compositions to enhance the germplasm of a plant. The methods describe the identification and accumulation of transgenes and favorable haplotype genomic regions in the germplasm of a breeding population of crop plants.
    Type: Application
    Filed: March 5, 2019
    Publication date: June 20, 2019
    Inventors: Jason Bull, David Butruille, Sam Eathington, Marlin Edwards, Anju Gupta, Richard Johnson, Wayne Kennard, Jennifer Rinehart, Kunsheng Wu
  • Publication number: 20190185875
    Abstract: The present invention provides breeding methods and compositions to enhance the germplasm of a plant. The methods describe the identification and accumulation of transgenes and favorable haplotype genomic regions in the germplasm of a breeding population of crop plants.
    Type: Application
    Filed: March 5, 2019
    Publication date: June 20, 2019
    Inventors: Jason Bull, David Butruille, Sam Eathington, Marlin Edwards, Anju Gupta, Richard Johnson, Wayne Kennard, Jennifer Rinehart, Kunsheng Wu
  • Patent number: 10316330
    Abstract: The invention provides corn event MON 87411, and plants, plant cells, seeds, plant parts, and commodity products comprising event MON 87411. The invention also provides polynucleotides specific for event MON 87411 and plants, plant cells, seeds, plant parts, and commodity products comprising polynucleotides specific for event MON 87411. The invention also provides methods related to event MON 87411.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: June 11, 2019
    Assignee: Monsanto Technology LLC
    Inventors: Wen C. Burns, Catherine A. Chay, Cheryl L. Cloninger, Mingqi Deng, Stanislaw Flasinski, Kunsheng Wu
  • Patent number: 10273498
    Abstract: The present invention provides breeding methods and compositions to enhance the germplasm of a plant. The methods describe the identification and accumulation of transgenes and favorable haplotype genomic regions in the germplasm of a breeding population of crop plants.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: April 30, 2019
    Assignee: Monsanto Technology LLC
    Inventors: Jason Bull, David Butruille, Sam Eathington, Marlin Edwards, Anju Gupta, Richard Johnson, Wayne Kennard, Jennifer Rinehart, Kunsheng Wu
  • Patent number: 10172305
    Abstract: The present invention is in the field of plant breeding. More specifically, the invention includes a method for breeding and selecting plants that uniform for one or more seed lot purity traits such as, such as distinct flower color, pubescence color, hilum color, and pod wall color. The invention further includes molecular markers associated with distinct flower color, pubescence color, hilum color, and pod wall color for uses in a breeding program.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: January 8, 2019
    Assignee: Monsanto Technology LLC
    Inventors: Jennifer Yates, Holly Kleiss, John P. Tamulonis, David R. Wooten, Jr., Kunsheng Wu
  • Publication number: 20190002907
    Abstract: The present invention provides a transgenic soybean comprising event MON87712 that exhibits increased yield. The invention also provides cells, plant parts, seeds, plants, commodity products related to the event, and DNA molecules that are unique to the event and were created by the insertion of transgenic DNA into the genome of a soybean plant. The invention further provides methods for detecting the presence of said soybean event nucleotide sequences in a sample, probes and primers for use in detecting nucleotide sequences that are diagnostic for the presence of said soybean event.
    Type: Application
    Filed: July 11, 2018
    Publication date: January 3, 2019
    Inventors: Robert H. Cole, John A. Korte, John R. LeDeaux, Melissa Compton Spears, Kunsheng Wu
  • Publication number: 20190002908
    Abstract: The present invention provides a transgenic soybean comprising event MON87712 that exhibits increased yield. The invention also provides cells, plant parts, seeds, plants, commodity products related to the event, and DNA molecules that are unique to the event and were created by the insertion of transgenic DNA into the genome of a soybean plant. The invention further provides methods for detecting the presence of said soybean event nucleotide sequences in a sample, probes and primers for use in detecting nucleotide sequences that are diagnostic for the presence of said soybean event.
    Type: Application
    Filed: July 11, 2018
    Publication date: January 3, 2019
    Inventors: Robert H. Cole, John A. Korte, John R. LeDeaux, Melissa Compton Spears, Kunsheng Wu
  • Publication number: 20180312865
    Abstract: The present invention relates to the field of plant breeding and disease resistance. More specifically, the invention includes a method for breeding soybean plants containing quantitative trail loci (QTL) for resistance the Phytophthora root rot (PRR) caused by Phytophthora sojae. The invention further includes the use of molecular markers in the introgression of PRR resistance QTL into soybean plants.
    Type: Application
    Filed: March 19, 2018
    Publication date: November 1, 2018
    Inventors: James Behm, Kunsheng Wu, John Tamulonis, Vergel Concibido, Jennifer L. Yates
  • Patent number: 10053704
    Abstract: The present invention provides a transgenic soybean comprising event MON87712 that exhibits increased yield. The invention also provides cells, plant parts, seeds, plants, commodity products related to the event, and DNA molecules that are unique to the event and were created by the insertion of transgenic DNA into the genome of a soybean plant. The invention further provides methods for detecting the presence of said soybean event nucleotide sequences in a sample, probes and primers for use in detecting nucleotide sequences that are diagnostic for the presence of said soybean event.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: August 21, 2018
    Assignee: Monsanto Technology LLC
    Inventors: Robert H. Cole, John A. Korte, John R. LeDeaux, Melissa Compton Spears, Kunsheng Wu
  • Patent number: 9944947
    Abstract: The present invention relates to the field of plant breeding and disease resistance. More specifically, the invention includes a method for breeding soybean plants containing quantitative trail loci (QTL) for resistance the Phytophthora root rot (PRR) caused by Phytophthora sojae. The invention further includes the use of molecular markers in the introgression of PRR resistance QTL into soybean plants.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: April 17, 2018
    Assignee: Monsanto Technology LLC
    Inventors: James Behm, Kunsheng Wu, John Tamulonis, Vergel Concibido, Jennifer L. Yates
  • Publication number: 20170362667
    Abstract: The invention provides a transgenic Glycine max event MON87751, plants, plant cells, seeds, plant parts, progeny plants, and commodity products comprising event MON87751. The invention also provides polynucleotides specific for event MON87751, plants, plant cells, seeds, plant parts, and commodity products comprising polynucleotides for event MON87751. The invention also provides methods related to event MON87751.
    Type: Application
    Filed: June 27, 2017
    Publication date: December 21, 2017
    Inventors: Kim A. Beazley, Wen C. Burns, Robert H. Cole, II, Ted C. MacRae, John A. Miklos, Lisa G. Ruschke, Kairong Tian, Liping Wei, Kunsheng Wu
  • Patent number: 9719145
    Abstract: The invention provides a transgenic Glycine max event MON87751, plants, plant cells, seeds, plant parts, progeny plants, and commodity products comprising event MON87751. The invention also provides polynucleotides specific for event MON87751, plants, plant cells, seeds, plant parts, and commodity products comprising polynucleotides for event MON87751. The invention also provides methods related to event MON87751.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: August 1, 2017
    Assignee: Monsanto Technology LLC
    Inventors: Kim A. Beazley, Wen C. Burns, Robert H. Cole, II, Ted C. MacRae, John A. Miklos, Lisa G. Ruschke, Kairong Tian, Liping Wei, Kunsheng Wu
  • Publication number: 20170166922
    Abstract: The invention provides a transgenic Gossypium hirsutum event MON 88702, plants, plant cells, seeds, plant parts, progeny plants, and commodity products comprising event MON 88702. The invention also provides polynucleotides specific for event MON 88702, plants, plant cells, seeds, plant parts, progeny plants, and commodity products comprising polynucleotides for event MON 88702. The invention also provides methods related to event MON 88702.
    Type: Application
    Filed: November 2, 2016
    Publication date: June 15, 2017
    Inventors: Waseem Akbar, Robert S. Brown, Wen C. Burns, Thomas L. Clark, Anilkumar Gowda, Aihong Pan, Xiaohong Shi, Jason W. Stelzer, Kunsheng Wu
  • Publication number: 20170164573
    Abstract: The invention overcomes the deficiencies of the art by providing an agronomically elite soybean plant with non-transgenic mutations of at least two of the glycinin subunits selected from the group consisting of Gy1, Gy2, Gy3, Gy4, and Gy5, such as conferring a Gy2 and Gy4 null phenotype and increased ?-conglycinin content in seed. The invention also provides derivatives, and plant parts of these plants and uses thereof. Methods for marker assisted selection of soybean varieties comprising non-transgenic mutations conferring a reduced Gy1, Gy2, Gy3, Gy4, and Gy5 phenotype are also provided as part of the current invention. Methods for producing such plants that are further lipoxygenase and/or Kunitz Trypsin Inhibitor null and the plants produced thereby are also provided. The invention is significant in that soybeans from such plants are preferred dietary additives and provide important health benefits.
    Type: Application
    Filed: December 22, 2016
    Publication date: June 15, 2017
    Inventors: Kunsheng Wu, Thomas Horejsi, Joseph R. Byrum, Neal Bringe, Julie Yang, Donghong Pei, Robert Reiter