Patents by Inventor Kun-Yu Wang

Kun-Yu Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250076369
    Abstract: A minimum IC operating voltage searching method includes acquiring a corner type of an IC, acquiring ring oscillator data of the IC, generating a first prediction voltage according to the corner type and the ring oscillator data by using a training model, generating a second prediction voltage according to the ring oscillator data by using a non-linear regression approach under an N-ordered polynomial, and generating a predicted minimum IC operating voltage according to the first prediction voltage and the second prediction voltage. N is a positive integer.
    Type: Application
    Filed: April 16, 2024
    Publication date: March 6, 2025
    Applicant: MEDIATEK INC.
    Inventors: Ronald Kuo-Hua Ho, Kun-Yu Wang, Yen-Chang Shih, Sung-Te Chen, Cheng-Han Wu, Yi-Ying Liao, Chun-Ming Huang, Yen-Feng Lu, Ching-Yu Tsai, Tai-Lai Tung, Kuan-Fu Lin, Bo-Kang Lai, Yao-Syuan Lee, Tsyr-Rou Lin, Ming-Chao Tsai, Li-Hsuan Chiu
  • Publication number: 20240311542
    Abstract: A rectilinear-block placement method includes disposing a first sub-block of each flexible block on a layout area of a chip canvas according to a reference position, generating an edge-depth map relative to first sub-blocks of flexible blocks on the layout area, predicting positions of second sub-blocks of the flexible blocks with depth values on the edge-depth map by a machine learning model, and positioning the second sub-blocks on the layout area according to the predicted positions of the second sub-blocks of the flexible blocks.
    Type: Application
    Filed: December 27, 2023
    Publication date: September 19, 2024
    Applicant: MEDIATEK INC.
    Inventors: Jen-Wei Lee, Yi-Ying Liao, Te-Wei Chen, Kun-Yu Wang, Sheng-Tai Tseng, Ronald Kuo-Hua Ho, Bo-Jiun Hsu, Wei-Hsien Lin, Chun-Chih Yang, Chih-Wei Ko, Tai-Lai Tung
  • Publication number: 20240303408
    Abstract: The application discloses a method and a system for shaping flexible blocks on a chip canvas in an integrated circuit design. An input is received describing geometric features of flexible blocks. A set of flexible blocks are generated based on the input. Obtained block areas of the set of flexible blocks are computed. Whether the set of flexible blocks are legal is determined based on determining whether area differences between the obtained block areas and a plurality of required areas for the set of flexible blocks meet a requirement. The set of flexible blocks are updated until the set of flexible blocks are all legal.
    Type: Application
    Filed: March 7, 2024
    Publication date: September 12, 2024
    Inventors: Kun-Yu WANG, Sheng-Tai TSENG, Yi-Ying LIAO, Jen-Wei LEE, Ronald Kuo-Hua HO, Bo-Jiun HSU, Te-Wei CHEN, Chun-Chih YANG, Tai-Lai TUNG
  • Publication number: 20230376653
    Abstract: A neural network is used to place macros on a chip canvas in an integrated circuit (IC) design. The macros are first clustered into multiple macro clusters. Then the neural network generates a probability distribution over locations on a grid and aspect ratios of a macro cluster. The grid represents the chip canvas and is formed by rows and columns of grid cells. The macro cluster is described by at least an area size, aspect ratios, and wire connections. Action masks are generated for respective ones of the aspect ratios to block out a subset of unoccupied grid cells based on design rules that optimize macro placement. Then, by applying the action masks on the probability distribution, a masked probability distribution is generated. Based on the masked probability distribution, a location on the grid is selected for placing the macro cluster with a chosen aspect ratio.
    Type: Application
    Filed: May 11, 2023
    Publication date: November 23, 2023
    Inventors: Hsin-Chuan Kuo, Chia-Wei Chen, Yu-Hsiu Lin, Kun-Yu Wang, Sheng-Tai Tseng, Chun-Ku Ting, Fang-Ming Yang, Yu-Hsien Ku, Jen-Wei Lee, Ronald Kuo-Hua Ho, Chun-Chieh Wang, Yi-Ying Liao, Tai-Lai Tung, Ming-Fang Tsai, Chun-Chih Yang, Chih-Wei Ko, Kun-Chin Huang
  • Patent number: 10171186
    Abstract: A method for detecting a notch band is applied to a multicarrier communication system that operates in a wideband. The method includes: receiving a received signal, and generating a plurality of frequency-domain signals according to the received signal; performing a magnitude operation on the frequency-domain signals to obtain a plurality of magnitude values; determining a plurality of ratios of a first magnitude set among the magnitude values to a second magnitude set among the magnitude value to determine whether the received signal contains a notch band.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: January 1, 2019
    Assignee: MSTAR SEMICONDUCTOR, INC.
    Inventors: Fong Shih Wei, Kun-Yu Wang, Yi-Ying Liao, Ko-Yin Lai, Tai-Lai Tung
  • Patent number: 10075306
    Abstract: An echo detection circuit for a multi-carrier system includes a memory, a threshold generating circuit and an echo determining circuit. The memory stores a plurality of channel impulse response values of the multi-channel system. The channel impulse response values include a target channel impulse response value, a plurality of preceding channel impulse response values and a plurality of subsequent channel impulse response values; a threshold generating circuit, coupled to the memory, generating a threshold corresponding to the target channel impulse response according to the preceding channel impulse response values and the subsequent channel impulse response values; and an echo determining circuit, coupled to the threshold generating circuit and the memory, comparing the target channel impulse response value with the threshold to determine whether the target channel impulse response value corresponds to an echo path of the multi-carrier system.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: September 11, 2018
    Assignee: MSTAR SEMICONDUCTOR, INC.
    Inventors: Kun-Yu Wang, Ko-Yin Lai, Tai-Lai Tung
  • Publication number: 20180097662
    Abstract: An echo detection circuit for a multi-carrier system includes a memory, a threshold generating circuit and an echo determining circuit. The memory stores a plurality of channel impulse response values of the multi-channel system. The channel impulse response values include a target channel impulse response value, a plurality of preceding channel impulse response values and a plurality of subsequent channel impulse response values; a threshold generating circuit, coupled to the memory, generating a threshold corresponding to the target channel impulse response according to the preceding channel impulse response values and the subsequent channel impulse response values; and an echo determining circuit, coupled to the threshold generating circuit and the memory, comparing the target channel impulse response value with the threshold to determine whether the target channel impulse response value corresponds to an echo path of the multi-carrier system.
    Type: Application
    Filed: February 17, 2017
    Publication date: April 5, 2018
    Inventors: Kun-Yu Wang, Ko-Yin Lai, Tai-Lai Tung
  • Publication number: 20180098019
    Abstract: A signal processing device of a television receiving end is provided. The television receiving end includes a tuner, which receives a television signal including a preamble signal. The signal processing device includes: an analog-to-digital converter, converting the television signal from an analog format to a digital format; an FFT circuit, transforming the television signal in the digital format to a frequency domain; a preamble data detecting circuit, detecting the preamble signal in the frequency-domain television signal to generate a preamble data detection result; a frequency notch detecting circuit, detecting a frequency notch of the preamble signal in the frequency-domain television signal according to the preamble data detection result to generate a frequency notch detection result; and a decoder, decoding the frequency-domain television signal to generate decoded data. The frequency notch detection result is for the tuner to accordingly determine whether to change the receiving frequency band.
    Type: Application
    Filed: March 8, 2017
    Publication date: April 5, 2018
    Inventors: Kun-Yu Wang, Fong Shih Wei, Yi-Ying Liao, Tai-Lai Tung
  • Publication number: 20170366283
    Abstract: A method for detecting a notch band is applied to a multicarrier communication system that operates in a wideband. The method includes: receiving a received signal, and generating a plurality of frequency-domain signals according to the received signal; performing a magnitude operation on the frequency-domain signals to obtain a plurality of magnitude values; determining a plurality of ratios of a first magnitude set among the magnitude values to a second magnitude set among the magnitude value to determine whether the received signal contains a notch band.
    Type: Application
    Filed: December 6, 2016
    Publication date: December 21, 2017
    Inventors: Fong Shih Wei, Kun-Yu Wang, Yi-Ying Liao, Ko-Yin Lai, Tai-Lai Tung
  • Publication number: 20170338843
    Abstract: An impulsive noise detection method is applied to an orthogonal frequency-division multiplexing (OFDM) system to detect whether an input signal includes impulsive noise. The impulsive noise detection method includes receiving the input signal, converting the input signal to a digital input signal, filtering out a data band from the digital input signal to generate a signal under detection, calculating the signal under detection to generate a calculation result, and determining whether the input signal includes the impulsive noise according to the calculation result and a threshold.
    Type: Application
    Filed: January 13, 2017
    Publication date: November 23, 2017
    Inventors: Kun-Yu Wang, Ko-Yin Lai, Tai-Lai Tung