Patents by Inventor Kuo Chung Yee

Kuo Chung Yee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240153901
    Abstract: A first and second semiconductor device are bonded together using a bonding contact pad embedded within a bonding dielectric layer of the first semiconductor device and at least one bonding via embedded within a bonding dielectric layer of the second semiconductor device. The bonding contact pad extends a first dimension in a first direction perpendicular to the major surface of the first semiconductor device and a second dimension in a second direction parallel to the plane of the first semiconductor wafer, the second dimension being at least twice the first dimension. The bonding via extends a third dimension in the first direction and a fourth dimension in the second direction, the third dimension being at least twice the first dimension. The bonding contact pad and bonding via may be at least partially embedded in respective bonding dielectric layers in respective topmost dielectric layers of respective stacked interconnect layers.
    Type: Application
    Filed: January 9, 2023
    Publication date: May 9, 2024
    Inventors: Yu-Hung Lin, Han-Jong Chia, Wei-Ming Wang, Kuo-Chung Yee, Chen Chen, Shih-Peng Tai
  • Patent number: 11978691
    Abstract: A semiconductor device includes a die stack and an encapsulant covering the die stack. The die stack includes a first die and a second die stacked upon one another, a bonding dielectric layer, and a through die via providing a vertical connection in the die stack. The first die includes a first substrate and a first conductive pad on the first substrate, and the second die includes a second substrate and a second conductive pad on the second substrate. The bonding dielectric layer interposed between the first substrate and the second substrate is in physical contact with at least one selected from the group of the first conductive pad and the second conductive pad. The through die via extends through the first conductive pad and the bonding dielectric layer and lands on the second pad.
    Type: Grant
    Filed: April 10, 2023
    Date of Patent: May 7, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Kuo-Chung Yee
  • Publication number: 20240128178
    Abstract: A method of forming a semiconductor structure is provided, and includes trimming a first substrate to form a recess on a sidewall of the first substrate. A conductive structure is formed in the first substrate. The method includes bonding the first substrate to a carrier. The method includes thinning down the first substrate. The method also includes forming a dielectric material in the recess and over a top surface of the thinned first substrate. The method further includes performing a planarization process to remove the dielectric material and expose the conductive structure over the top surface. In addition, the method includes removing the carrier from the first substrate.
    Type: Application
    Filed: February 8, 2023
    Publication date: April 18, 2024
    Inventors: Yu-Hung LIN, Wei-Ming WANG, Su-Chun YANG, Jih-Churng TWU, Shih-Peng TAI, Kuo-Chung YEE
  • Patent number: 11961789
    Abstract: A semiconductor package includes a chip, a redistribution structure, and first under-ball metallurgies patterns. The chip includes conductive posts exposed at an active surface. The redistribution structure is disposed on the active surface. The redistribution structure includes a first dielectric layer, a topmost metallization layer, and a second dielectric layer. The first dielectric layer includes first openings exposing the conductive posts of the chip. The topmost metallization layer is disposed over the first dielectric layer and is electrically connected to the conductive posts. The topmost metallization layer comprises first contact pads and routing traces connected to the first contact pads. The second dielectric layer is disposed on the topmost metallization layer and includes second openings exposing the first contact pads. The first under-ball metallurgies patterns are disposed on the first contact pads, extending on and contacting sidewalls and top surfaces of the first contact pads.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chun-Hui Yu, Kuo-Chung Yee
  • Publication number: 20240096722
    Abstract: In an embodiment, a package includes a first device and a second device attached to a first redistribution structure, wherein the second device includes a second redistribution structure, a first die disposed over the second redistribution structure, a first encapsulant extending along sidewalls of the first die, a first via extending through the first encapsulant, a third redistribution structure disposed over the first encapsulant and including a first metallization pattern connecting to the first via, a second die disposed over the third redistribution structure, and a second encapsulant extending along sidewalls of the second die, the first die and the second die being free of through substrate vias. The package also includes a third encapsulant disposed over the first redistribution structure and surrounding sidewalls of the first device and the second device, wherein top surfaces of the second encapsulant and the third encapsulant are level with each other.
    Type: Application
    Filed: January 10, 2023
    Publication date: March 21, 2024
    Inventors: Kuo-Chung Yee, Chia-Hui Lin, Shih-Peng Tai
  • Publication number: 20240096825
    Abstract: A bond head is provided. The bond head includes a bond base, a chuck member, and an elastic material. The chuck member protrudes from a surface of the bond base, and has a chuck surface formed with vacuum holes for holding a die using differential air pressure. In the direction parallel to the chuck surface, the width of the chuck surface is less than the width of the bond base and is equal to or greater than the width of the die. The elastic material is disposed over the chuck surface. The elastic material is arranged around the periphery of the chuck surface to cover edges and/or corners of the chuck surface.
    Type: Application
    Filed: February 8, 2023
    Publication date: March 21, 2024
    Inventors: Chen-Hua YU, Chih-Hang TUNG, Kuo-Chung YEE, Yian-Liang KUO, Jiun-Yi WU
  • Publication number: 20240096760
    Abstract: A semiconductor package includes a chip, a redistribution structure, and first under- ball metallurgies patterns. The chip includes conductive posts exposed at an active surface. The redistribution structure is disposed on the active surface. The redistribution structure includes a first dielectric layer, a topmost metallization layer, and a second dielectric layer. The first dielectric layer includes first openings exposing the conductive posts of the chip. The topmost metallization layer is disposed over the first dielectric layer and is electrically connected to the conductive posts. The topmost metallization layer comprises first contact pads and routing traces connected to the first contact pads. The second dielectric layer is disposed on the topmost metallization layer and includes second openings exposing the first contact pads. The first under-ball metallurgies patterns are disposed on the first contact pads, extending on and contacting sidewalls and top surfaces of the first contact pads.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chun-Hui Yu, Kuo-Chung Yee
  • Publication number: 20240096830
    Abstract: A method includes forming a first sealing layer at a first edge region of a first wafer; and bonding the first wafer to a second wafer to form a wafer stack. At a time after the bonding, the first sealing layer is between the first edge region of the first wafer and a second edge region of the second wafer, with the first edge region and the second edge region comprising bevels. An edge trimming process is then performed on the wafer stack. After the edge trimming process, the second edge region of the second wafer is at least partially removed, and a portion of the first sealing layer is left as a part of the wafer stack. An interconnect structure is formed as a part of the second wafer. The interconnect structure includes redistribution lines electrically connected to integrated circuit devices in the second wafer.
    Type: Application
    Filed: January 9, 2023
    Publication date: March 21, 2024
    Inventors: Yu-Yi Huang, Yu-Hung Lin, Wei-Ming Wang, Chen Chen, Shih-Peng Tai, Kuo-Chung Yee
  • Publication number: 20240088077
    Abstract: A method includes forming integrated circuits on a front side of a first chip, performing a backside grinding on the first chip to reveal a plurality of through-vias in the first chip, and forming a first bridge structure on a backside of the first chip using a damascene process. The bridge structure has a first bond pad, a second bond pad, and a conductive trace electrically connecting the first bond pad to the second bond pad. The method further includes bonding a second chip and a third chip to the first chip through face-to-back bonding. A third bond pad of the second chip is bonded to the first bond pad of the first chip. A fourth bond pad of the third chip is bonded to the second bond pad of the first chip.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Inventors: Chen-Hua Yu, Kuo-Chung Yee
  • Publication number: 20240087986
    Abstract: A semiconductor device including a substrate, a semiconductor package, a thermal conductive bonding layer, and a lid is provided. The semiconductor package is disposed on the substrate. The thermal conductive bonding layer is disposed on the semiconductor package. The lid is attached to the thermal conductive bonding layer and covers the semiconductor package to prevent coolant from contacting the semiconductor package.
    Type: Application
    Filed: November 15, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chun-Hui Yu, Jeng-Nan Hung, Kuo-Chung Yee, Po-Fan Lin
  • Patent number: 11929345
    Abstract: In an embodiment, a device includes: a first device including: an integrated circuit device having a first connector; a first photosensitive adhesive layer on the integrated circuit device; and a first conductive layer on the first connector, the first photosensitive adhesive layer surrounding the first conductive layer; a second device including: an interposer having a second connector; a second photosensitive adhesive layer on the interposer, the second photosensitive adhesive layer physically connected to the first photosensitive adhesive layer; and a second conductive layer on the second connector, the second photosensitive adhesive layer surrounding the second conductive layer; and a conductive connector bonding the first and second conductive layers, the conductive connector surrounded by an air gap.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: March 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chun Hui Yu, Kuo-Chung Yee
  • Patent number: 11916028
    Abstract: A package structure and a method of forming the same are provided. The package structure includes a die, an encapsulant and a RDL structure, the encapsulant encapsulate sidewalls of the die. The RDL structure is disposed on the die and the encapsulant. The RDL structure includes a first dielectric structure and a first redistribution layer. The first dielectric structure includes a first dielectric material layer and a second dielectric material layer on the first dielectric material layer. The first redistribution layer is embedded in the first dielectric structure and electrically connected to the die, the redistribution layer comprises a first seed layer and a first conductive layer disposed on the first seed layer. A topmost surface of the first seed layer and a topmost surface of the first conductive layer are substantially level with a top surface of the second dielectric material layer.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: February 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chun-Hui Yu, Kuo-Chung Yee
  • Publication number: 20240047404
    Abstract: A structure including a first semiconductor die and a second semiconductor die is provided. The first semiconductor die includes a first bonding structure. The first bonding structure includes a first dielectric layer and first conductors embedded in the first dielectric layer. The second semiconductor die includes a second bonding structure. The second bonding structure includes a second dielectric layer and second conductors embedded in the second dielectric layer. The first dielectric layer is in contact with the second dielectric layer, and the first conductors are in contact with the second conductors. Thermal conductivity of the first dielectric layer and the second dielectric layer is greater than thermal conductivity of silicon dioxide.
    Type: Application
    Filed: October 18, 2023
    Publication date: February 8, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chun-Hui Yu, Jeng-Nan Hung, Kuo-Chung Yee, Po-Fan Lin
  • Publication number: 20240047216
    Abstract: A method includes forming an etching mask over a first wafer. The etching mask covers an inner portion of the first wafer. A wafer edge trimming process is performed to trim an edge portion of the first wafer, with the etching mask protecting the inner portion of the first wafer from being etched. The edge portion forms a full ring encircling the inner portion of the first wafer. The method further includes removing the etching mask, and bonding the first wafer to a second wafer.
    Type: Application
    Filed: August 2, 2022
    Publication date: February 8, 2024
    Inventors: Wei-Ming Wang, Yu-Hung Lin, Shih-Peng Tai, Kuo-Chung Yee
  • Publication number: 20240014091
    Abstract: A semiconductor device includes an integrated circuit structure and a thermal pillar over the integrated circuit structure. The integrated circuit structure includes a semiconductor substrate including circuitry, a dielectric layer over the semiconductor substrate, an interconnect structure over the dielectric layer, and a first thermal fin extending through the semiconductor substrate, the dielectric layer, and the interconnect structure. The first thermal fin is electrically isolated from the circuitry. The thermal pillar is thermally coupled to the first thermal fin.
    Type: Application
    Filed: July 11, 2022
    Publication date: January 11, 2024
    Inventors: Wei-Ming Wang, Yu-Hung Lin, Shih-Peng Tai, Kuo-Chung Yee
  • Publication number: 20240014151
    Abstract: A package structure has a first die, a second die, the third die, a molding compound, a first redistribution layer, an antenna and conductive elements. The first die, the second die and the third die are molded in a molding compound. The first redistribution layer is disposed on the molding compound and is electrically connected to the first die, the second die and the third die. The antenna is located on the molding compound and electrically connected to the first die, the second die and the third die, wherein a distance of an electrical connection path between the first die and the antenna is smaller than or equal to a distance of an electrical connection path between the second die and the antenna and a distance of an electrical connection path between the third die and the antenna. The conductive elements are connected to the first redistribution layer, wherein the first redistribution layer is located between the conductive elements and the molding compound.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 11, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Kuo-Chung Yee
  • Publication number: 20240006270
    Abstract: In an embodiment, a package includes an interposer; a first integrated circuit device attached to the interposer, wherein the first integrated circuit device includes a die and a heat dissipation structure, the die having an active surface facing the interposer and an inactive surface opposite to the active surface, the heat dissipation structure attached to the inactive surface of the die and including a plurality of channels recessed from a first surface of the heat dissipation structure, the first surface of the heat dissipation structure facing away from the die; and an encapsulant disposed on the interposer and laterally around the die and the heat dissipation structure, wherein a top surface of the encapsulant is coplanar with the top surface of the heat dissipation structure.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 4, 2024
    Inventors: Hung-Yi Kuo, Chen-Hua Yu, Kuo-Chung Yee, Cheng-Chieh Hsieh, Chung-Ju Lee, Szu-Wei Lu
  • Patent number: 11854936
    Abstract: A semiconductor device including a substrate, a semiconductor package, a thermal conductive bonding layer, and a lid is provided. The semiconductor package is disposed on the substrate. The thermal conductive bonding layer is disposed on the semiconductor package. The lid is attached to the thermal conductive bonding layer and covers the semiconductor package to prevent coolant from contacting the semiconductor package.
    Type: Grant
    Filed: January 17, 2023
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chun-Hui Yu, Jeng-Nan Hung, Kuo-Chung Yee, Po-Fan Lin
  • Patent number: 11855020
    Abstract: A method includes forming integrated circuits on a front side of a first chip, performing a backside grinding on the first chip to reveal a plurality of through-vias in the first chip, and forming a first bridge structure on a backside of the first chip using a damascene process. The bridge structure has a first bond pad, a second bond pad, and a conductive trace electrically connecting the first bond pad to the second bond pad. The method further includes bonding a second chip and a third chip to the first chip through face-to-back bonding. A third bond pad of the second chip is bonded to the first bond pad of the first chip. A fourth bond pad of the third chip is bonded to the second bond pad of the first chip.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chen-Hua Yu, Kuo-Chung Yee
  • Publication number: 20230402340
    Abstract: A semiconductor device including a first semiconductor die, a second semiconductor die, thermal silicon substrates and an encapsulation is provided. The second semiconductor die is disposed on and electrically connected to the first semiconductor die. The thermal silicon substrates are disposed on the first semiconductor die, wherein the thermal silicon substrates are spaced apart from the second semiconductor die. The encapsulation is disposed on the first semiconductor die. The encapsulation encapsulates the second semiconductor die and the thermal silicon substrates. The encapsulation includes a filling material layer and an insulator, wherein the filling material layer is disposed on the first semiconductor die and located between the second semiconductor die and thermal silicon substrates, and the filling material layer is spaced apart from the second semiconductor die and the thermal silicon substrates by the insulator.
    Type: Application
    Filed: May 18, 2022
    Publication date: December 14, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Lin, Shih-Peng Tai, Kuo-Chung Yee, Chen-Hua Yu, Wei-Ming Wang