Patents by Inventor Kuo-Hsin Lin

Kuo-Hsin Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12077873
    Abstract: A method for manufacturing nitride catalyst is provided, which includes putting a Ru target and an M target into a nitrogen-containing atmosphere, in which M is Ni, Co, Fe, Mn, Cr, V, Ti, Cu, or Zn. The method also includes providing powers to the Ru target and the M target, respectively. The method also includes providing ions to bombard the Ru target and the M target for depositing MxRuyN2 on a substrate by sputtering, wherein 0<x<1.3, 0.7<y<2, and x+y=2, wherein MxRuyZ2 is cubic crystal system or amorphous.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: September 3, 2024
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuo-Hsin Lin, Li-Duan Tsai, Wen-Hsuan Chao, Chiu-Ping Huang, Pin-Hsin Yang, Hsiao-Chun Huang, Jiunn-Nan Lin, Yu-Ming Lin
  • Publication number: 20230203680
    Abstract: An anode catalyst material has a chemical formula of FeaNibMcNdOe, wherein M is Mo, W, Sn, Si, Nb, V, Cr, Ta or a combination thereof. a+b+c+d+e=1, a>0, b>0, c>0, d?0, and e?0. The anode catalyst material can be used in a water electrolysis device for hydrogen evolution, which includes an anode and a cathode disposed in an alkaline aqueous solution, and the anode includes the described anode catalyst material.
    Type: Application
    Filed: June 14, 2022
    Publication date: June 29, 2023
    Applicant: Industrial Technology Research Institute
    Inventors: Wen-Hsuan CHAO, Kuo-Hsin LIN, Hsiao-Chun HUANG, Shih-Chang CHEN, Han-Jung LI, Li-Duan TSAI
  • Patent number: 11549188
    Abstract: A membrane electrode assembly includes a first electrode, a second electrode, and an anion exchange membrane disposed between the first electrode and the second electrode. The first electrode includes a first metal mesh, a first catalyst layer wrapping the first metal mesh, a second metal mesh, and a second catalyst layer wrapping the second metal mesh. The first metal mesh is disposed between the anion exchange membrane and the second metal mesh. The second metal mesh is thicker than the first metal mesh, and the first catalyst layer is thicker than the second catalyst layer. The second catalyst layer is iron, cobalt, manganese, zinc, niobium, molybdenum, ruthenium, platinum, gold, or aluminum. The second catalyst layer is crystalline.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: January 10, 2023
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuo-Hsin Lin, Hsiao-Chun Huang, Li-Duan Tsai, Hao-Ming Chen
  • Publication number: 20220349072
    Abstract: A membrane electrode assembly includes a first electrode, a second electrode, and an anion exchange membrane disposed between the first electrode and the second electrode. The first electrode includes a first metal mesh, a first catalyst layer wrapping the first metal mesh, a second metal mesh, and a second catalyst layer wrapping the second metal mesh. The first metal mesh is disposed between the anion exchange membrane and the second metal mesh. The second metal mesh is thicker than the first metal mesh, and the first catalyst layer is thicker than the second catalyst layer. The second catalyst layer is iron, cobalt, manganese, zinc, niobium, molybdenum, ruthenium, platinum, gold, or aluminum. The second catalyst layer is crystalline.
    Type: Application
    Filed: April 28, 2021
    Publication date: November 3, 2022
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuo-Hsin LIN, Hsiao-Chun HUANG, Li-Duan TSAI, Hao-Ming CHEN
  • Patent number: 11142836
    Abstract: A method for manufacturing catalyst material is provided, which includes putting an M? target and an M? target into a nitrogen-containing atmosphere, in which M? is Ni, Co, Fe, Mn, Cr, V, Ti, Cu, or Zn, and M? is Nb, Ta, or a combination thereof. Powers are provided to the M? target and the M? target, respectively. Providing ions to bombard the M? target and the M? target to sputtering deposit M?aM?bN2 on a substrate, wherein 0.7?a?1.7, 0.3?b?1.3, and a+b=2, wherein M?aM?bN2 is a cubic crystal system.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: October 12, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuo-Hsin Lin, Li-Duan Tsai, Wen-Hsuan Chao, Yu-Ming Lin, Pin-Hsin Yang, Hsiao-Chun Huang, Chiu-Ping Huang, Jiunn-Nan Lin
  • Publication number: 20210095383
    Abstract: A method for manufacturing nitride catalyst is provided, which includes putting a Ru target and an M target into a nitrogen-containing atmosphere, in which M is Ni, Co, Fe, Mn, Cr, V, Ti, Cu, or Zn. The method also includes providing powers to the Ru target and the M target, respectively. The method also includes providing ions to bombard the Ru target and the M target for depositing MxRuyN2 on a substrate by sputtering, wherein 0<x<1.3, 0.7<y<2, and x+y=2, wherein MxRuyZ2 is cubic crystal system or amorphous.
    Type: Application
    Filed: November 30, 2020
    Publication date: April 1, 2021
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuo-Hsin LIN, Li-Duan TSAI, Wen-Hsuan CHAO, Chiu-Ping HUANG, Pin-Hsin YANG, Hsiao-Chun HUANG, Jiunn-Nan LIN, Yu-Ming LIN
  • Patent number: 10914011
    Abstract: A method for hydrogen evolution by electrolysis includes soaking a membrane electrode assembly into an alkaline aqueous solution. The membrane electrode assembly includes an anode having a first catalyst layer on a first gas-liquid diffusion layer, a cathode having a second catalyst layer on a second gas-liquid diffusion layer, and a cationic exchange membrane between the first catalyst layer of the anode and the second catalyst layer of the cathode. The first catalyst layer, the second catalyst layer, or both of the above has a chemical structure of MxRuyN2, wherein M is Ni, Co, Fe, Mn, Cr, V, Ti, Cu, or Zn, 0<x<1.3, 0.7<y<2, and x+y=2, wherein MxRuyN2 is cubic crystal system or amorphous. The method also applies a voltage to the anode and the cathode for electrolysis of the alkaline aqueous solution, thereby producing hydrogen at the cathode and producing oxygen at the anode.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: February 9, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuo-Hsin Lin, Li-Duan Tsai, Yu-Ming Lin, Wen-Hsuan Chao, Chiu-Ping Huang, Pin-Hsin Yang, Hsiao-Chun Huang, Jiunn-Nan Lin
  • Patent number: 10914012
    Abstract: A membrane electrode assembly includes an anode having a first catalyst layer on a first gas-liquid diffusion layer, a cathode having a second catalyst layer on a second gas-liquid diffusion layer, and an anionic exchange membrane between the first catalyst layer of the anode and the second catalyst layer of the cathode. The first catalyst layer has a chemical structure of M?aM?bN2 or M?cM?dCe, wherein M? is Ni, Co, Fe, Mn, Cr, V, Ti, Cu, or Zn, M? is Nb, Ta, or a combination thereof, 0.7?a?1.7, 0.3?b?1.3, a+b=2, 0.24?c?1.7, 0.3?d?1.76, and 0.38?e?3.61, wherein M?aM?bN2 is a cubic crystal system and M?cM?d Ce is a cubic crystal system or amorphous.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: February 9, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuo-Hsin Lin, Li-Duan Tsai, Yu-Ming Lin, Wen-Hsuan Chao, Chiu-Ping Huang, Pin-Hsin Yang, Hsiao-Chun Huang, Jiunn-Nan Lin
  • Patent number: 10900133
    Abstract: A method for manufacturing nitride catalyst is provided, which includes putting a Ru target and an M target into a nitrogen-containing atmosphere, in which M is Ni, Co, Fe, Mn, Cr, V, Ti, Cu, or Zn. The method also includes providing powers to the Ru target and the M target, respectively. The method also includes providing ions to bombard the Ru target and the M target for depositing MxRuyN2 on a substrate by sputtering, wherein 0<x<1.3, 0.7<y<2, and x+y=2, wherein MxRuyZ2 is cubic crystal system or amorphous.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: January 26, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuo-Hsin Lin, Li-Duan Tsai, Wen-Hsuan Chao, Chiu-Ping Huang, Pin-Hsin Yang, Hsiao-Chun Huang, Jiunn-Nan Lin, Yu-Ming Lin
  • Publication number: 20200173042
    Abstract: A method for manufacturing catalyst material is provided, which includes putting an M? target and an M? target into a nitrogen-containing atmosphere, in which M? is Ni, Co, Fe, Mn, Cr, V, Ti, Cu, or Zn, and M? is Nb, Ta, or a combination thereof. Powers are provided to the M? target and the M? target, respectively. Providing ions to bombard the M? target and the M? target to sputtering deposit M?aM?bN2 on a substrate, wherein 0.7?a?1.7, 0.3?b?1.3, and a+b=2, wherein M?aM?bN2 is a cubic crystal system.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 4, 2020
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuo-Hsin LIN, Li-Duan TSAI, Wen-Hsuan CHAO, Yu-Ming LIN, Pin-Hsin YANG, Hsiao-Chun HUANG, Chiu-Ping HUANG, Jiunn-Nan LIN
  • Publication number: 20200173040
    Abstract: A membrane electrode assembly includes an anode having a first catalyst layer on a first gas-liquid diffusion layer, a cathode having a second catalyst layer on a second gas-liquid diffusion layer, and an anionic exchange membrane between the first catalyst layer of the anode and the second catalyst layer of the cathode. The first catalyst layer has a chemical structure of M?aM?bN2 or M?cM?dCe, wherein M? is Ni, Co, Fe, Mn, Cr, V, Ti, Cu, or Zn, M? is Nb, Ta, or a combination thereof, 0.7?a?1.7, 0.3?b?1.3, a+b=2, 0.24?c?1.7, 0.3?d?1.76, and 0.38?e?3.61, wherein M?aM?bN2 is a cubic crystal system and M?cM?d Ce is a cubic crystal system or amorphous.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 4, 2020
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuo-Hsin LIN, Li-Duan TSAI, Yu-Ming LIN, Wen-Hsuan CHAO, Chiu-Ping HUANG, Pin-Hsin YANG, Hsiao-Chun HUANG, Jiunn-Nan LIN
  • Publication number: 20200173043
    Abstract: A method for manufacturing nitride catalyst is provided, which includes putting a Ru target and an M target into a nitrogen-containing atmosphere, in which M is Ni, Co, Fe, Mn, Cr, V, Ti, Cu, or Zn. The method also includes providing powers to the Ru target and the M target, respectively. The method also includes providing ions to bombard the Ru target and the M target for depositing MxRuyN2 on a substrate by sputtering, wherein 0<x<1.3, 0.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 4, 2020
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuo-Hsin LIN, Li-Duan TSAI, Wen-Hsuan CHAO, Chiu-Ping HUANG, Pin-Hsin YANG, Hsiao-Chun HUANG, Jiunn-Nan LIN, Yu-Ming LIN
  • Publication number: 20200173039
    Abstract: A method for hydrogen evolution by electrolysis includes soaking a membrane electrode assembly into an alkaline aqueous solution. The membrane electrode assembly includes an anode having a first catalyst layer on a first gas-liquid diffusion layer, a cathode having a second catalyst layer on a second gas-liquid diffusion layer, and a cationic exchange membrane between the first catalyst layer of the anode and the second catalyst layer of the cathode. The first catalyst layer, the second catalyst layer, or both of the above has a chemical structure of MxRuyN2, wherein M is Ni, Co, Fe, Mn, Cr, V, Ti, Cu, or Zn, 0<x<1.3, 0.7<y<2, and x+y=2, wherein MxRuyN2 is cubic crystal system or amorphous. The method also applies a voltage to the anode and the cathode for electrolysis of the alkaline aqueous solution, thereby producing hydrogen at the cathode and producing oxygen at the anode.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 4, 2020
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuo-Hsin Lin, Li-Duan Tsai, Yu-Ming Lin, Wen-Hsuan Chao, Chiu-Ping Huang, Pin-Hsin Yang, Hsiao-Chun Huang, Jiunn-Nan Lin
  • Patent number: 8263852
    Abstract: A heat sink has a number of fixing frames. The fixing frames are soldered with of solar cell devices. And, the fixing frames are defined with insulating ink. Hence, the fixing frames can be used for insulating and locating the of a solar cell devices. Besides, with the insulating ink, solar cells of the solar cell devices are prevented from being contacted with the heat sink. As a result, a good electrical property is obtained on assembling and using the solar cell devices.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: September 11, 2012
    Assignee: Atomic Energy Council—Institute of Nuclear Energy Research
    Inventors: Zun-Hao Shih, Hwen-Fen Hong, Kuo-Hsin Lin
  • Patent number: 8145021
    Abstract: Disclosed is a cable for use in a concentrating photovoltaic module. The cable includes at least one strand wrapped with an optically pervious or reflective sheath. The pervious sheath is made of a material that exhibits a penetration rate of 90% and survives a temperature of at least 140 degrees Celsius. The reflective sheath is made of a material that exhibits a reflection rate of 95% and survives a temperature of at least 140 degrees Celsius. The cable is used to connect an anode of the concentrating photovoltaic module to a cathode of the same. The material of the reflective sheath may be isolating.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: March 27, 2012
    Assignee: Atomic Energy Council-Institute of Nuclear Research
    Inventors: Yi-Ping Liang, Kuo-Hsin Lin, Hwen-Fen Hong, Hwa-Yuh Shin, Cherng-Tsong Kuo
  • Publication number: 20110170834
    Abstract: Disclosed is a cable for use in a concentrating photovoltaic module. The cable includes at least one strand wrapped with an optically pervious or reflective sheath. The pervious sheath is made of a material that exhibits a penetration rate of 90% and survives a temperature of at least 140 degrees Celsius. The reflective sheath is made of a material that exhibits a reflection rate of 95% and survives a temperature of at least 140 degrees Celsius. The cable is used to connect an anode of the concentrating photovoltaic module to a cathode of the same. The material of the reflective sheath may be isolating.
    Type: Application
    Filed: January 13, 2010
    Publication date: July 14, 2011
    Applicant: ATOMIC ENERGY COUNCIL-INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: Yi-Ping Liang, Kuo-Hsin Lin, Hwen-Fen Hong, Hwa-Yuh Shin, Cherng-Tsong Kuo
  • Publication number: 20110017490
    Abstract: There is disclosed a cable for use in a condensing photovoltaic apparatus. The cable includes a core and sheath. The core is made of a conductive material. The sheath is provided around the core and made of white Teflon. Therefore, the sheath absorbs less heat than a sheath made of other colors would. Moreover, the sheath stands high temperatures since it is made Teflon.
    Type: Application
    Filed: May 2, 2008
    Publication date: January 27, 2011
    Applicant: ATOMIC ENERGY COUNCIL-INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: Hwa-yuh Shin, Hung-zen Kuo, Kuo-hsin Lin, Hwen-fen Hong
  • Publication number: 20110011452
    Abstract: A concentration photovoltaic apparatus includes a substrate, a bypass diode, a solar cell and an adhesion layer. The substrate includes five conduction regions. The solar cell is provided on the fourth conduction region, on a side of the cutouts, and connected to the third and fifth conduction regions through wires. The adhesion layer is provided between the solar cell and the fourth conduction region.
    Type: Application
    Filed: October 19, 2008
    Publication date: January 20, 2011
    Applicant: ATOMIC ENERGY COUNCIL - INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: Kuo-Hsin LIN, Hwen-Fen Hong, Zun-Hao Shih, Yi-Ping Liang
  • Publication number: 20110011442
    Abstract: A heat sink has a number of fixing frames. The fixing frames are soldered with of solar cell devices. And, the fixing frames are defined with insulating ink. Hence, the fixing frames can be used for insulating and locating the of a solar cell devices. Besides, with the insulating ink, solar cells of the solar cell devices are prevented from being contacted with the heat sink. As a result, a good electrical property is obtained on assembling and using the solar cell devices.
    Type: Application
    Filed: June 23, 2008
    Publication date: January 20, 2011
    Applicant: ATOMIC ENERGY COUNCIL - INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: Zun-Hao SHIH, Hwen-Fen Hong, Kuo-Hsin Lin
  • Publication number: 20090250111
    Abstract: A dissipation package of a solar cell is provided. The package swiftly dissipates the heat generated by the solar cell and a circuit layer coordinated. It is done by binding a ceramic layer under the circuit layer to a dissipation unit with a buffer layer and a mount layer in between.
    Type: Application
    Filed: April 3, 2008
    Publication date: October 8, 2009
    Applicant: ATOMIC ENERGY COUNSIL - INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: Hwen-Fen Hong, Kuo-Hsin Lin, Zun-Hao Shih, Hwa-Yun Shin, Cherng-Tsong Kuo